« Planétologie/Les astéroïdes » : différence entre les versions

Un livre de Wikilivres.
Contenu supprimé Contenu ajouté
Ligne 25 : Ligne 25 :
! Composition chimique présumée
! Composition chimique présumée
! Chondrites associées
! Chondrites associées
! Ressemblances avec les autres types
|-
|-
! Astéroïdes de classe C
! Astéroïdes de classe C
Ligne 40 : Ligne 39 :
| rowspan="3" | Riches en métaux (astéroïdes métalliques, métalliques-pierreux).
| rowspan="3" | Riches en métaux (astéroïdes métalliques, métalliques-pierreux).
| rowspan="3" | Chondrites à enstatite et métalliques.
| rowspan="3" | Chondrites à enstatite et métalliques.
| Similaire aux astéroïdes de type M, sauf pour le faible albédo.
|-
|-
! Astéroïdes de classe M
! Astéroïdes de classe M
Ligne 46 : Ligne 44 :
| rowspan="4" | Albédo assez fort : environ 0.1–0.2.
| rowspan="4" | Albédo assez fort : environ 0.1–0.2.
| rowspan="4" | Astéroïdes proches du Soleil, localisés dans la ceinture interne (Distance au Soleil < 2,7 UA).
| rowspan="4" | Astéroïdes proches du Soleil, localisés dans la ceinture interne (Distance au Soleil < 2,7 UA).
| Similaire aux astéroïdes de type P, mais avec un plus fort albédo.
|-
|-
! Astéroïdes de classe W
! Astéroïdes de classe W

Version du 21 mai 2020 à 14:02

Comparaison de la taille de divers astéroïdes du système solaire.

Les astéroïdes sont des petits corps rocheux, des sortes de gros cailloux flottants dans l’espace. Avant de rentrer dans l'atmosphère et de tomber sur Terre, les astéroïdes orbitent autour du Soleil, ou d'une planète. La plupart des astéroïdes sont trop petits pour atteindre une forme sphérique et leur forme est irrégulière, patatoïde pourrait-on dire. Certains astéroïdes sont même formés de plusieurs lobes qui s'accrochent souvent à un petit corps central. Ces astéroïdes conservent leur forme grâce à diverses forces de cohésion qui les empêchent d'éclater en morceaux. La gravité est certes une force de cohésion importante pour les planètes, mais elle se fait plus discrète pour les astéroïdes. Les forces de cohésion sont essentiellement des forces de nature électromagnétiques, les forces de Van der Waals étant prédominantes.

La classification spectrale des astéroïdes

Il est possible de déterminer la composition chimique des astéroïdes en analysant la lumière qu’ils réfléchissent. Il apparait de ces analyses que tous les astéroïdes n'ont pas la même composition chimique, comme les analyses sur les météorites nous le font naturellement penser. Les astéroïdes sont classés selon leur albédo, leur couleur et leur spectre.

La toute première classification présupposait que ces informations permettaient de déterminer la composition chimique de l'astéroïde sans interprétation ou analyse plus poussée. Elle distinguait seulement trois types : le type C supposé riche en carbone, le type S supposé riche en silicates et le type M supposé riche en métaux.

  • Les astéroïdes de type C ont un spectre neutre, ce qui veut dire qu'ils n'ont pas de couleur prédominante. Ils ont un albédo assez faible, d'à peine 0.04–0.06. Leur spectre ressemble beaucoup à celui des chondrites carbonées, de type CI et CM. Ils représentent environ 40% des astéroïdes détectés. Ils sont assez éloignés du Soleil et on les trouve surtout dans les portions externes du système solaire, au-delà de 2,7 Unités astronomiques du Soleil.
  • Les astéroïdes de type S sont les seconds plus fréquents, après les astéroïdes de type C. Ils sont fortement réfléchissants, avec un albédo compris entre 0.14 et 0.17. Ils ont un spectre légèrement rouge, qui semble proche de celui des chondrites ordinaires. Ils semblent être composés intégralement de silicates.
  • Les astéroïdes de type M sont les troisièmes en terme de fréquence. Ils ont un spectre qui laisse présager d'une composition métallique. On n'y retrouve pas les raies d'absorptions propres aux silicates, alors que celles des métaux les plus courants (Fer et Nickel) le sont. Ils ont un fort albédo (d'environ 0.1–0.2) et sont légèrement plus réfléchissant que les astéroïdes de type S.

Aux types C, S et M, on peut ajouter d'autres types assez similaires. La classification complète est donnée dans le tableau ci-dessous.

  • Les astéroïdes de types D et P sont similaires aux astéroïdes de type C, si ce n'est qu'ils ont une couleur rouge plus prononcée. Ce sont donc des corps sombres, d’albédo très faible (0.02–0.07). Leur couleur rouge proviendrait de l'accumulation de composés carbonés, formés par l'érosion spatiale de roches riches en Carbone.
  • Les astéroïdes de types W sont similaires aux astéroïdes de type M, sauf qu'ils ont une raie d'absorption en plus dans la bande 3 µm. Cette raie d'absorption est le signe de la présence d'eau, ce qui veut dire que ces astéroïdes contiennent des minéraux hydratés.
  • Les astéroïdes de type V sont représenté par l'astéroïde Vesta et quelques petits astéroïdes similaires. Ils partagent un même spectre caractéristique, presque identique au corps principal (Vesta). Il semblerait que les petits astéroïdes soient des fragments de Vesta qui auraient été satellisés suite à divers impacts de météorites.
Type spectral Spectre lumineux et couleur Albédo Localisation Composition chimique présumée Chondrites associées
Astéroïdes de classe C Spectre neutre, pas de couleur prédominante. Albédo très faible : environ 0.04–0.06. Astéroïdes éloignés du Soleil, localisés dans la ceinture externe (Distance au Soleil > 2,7 UA). Riche en Carbone Chondrites carbonées de type CI et CM.
Astéroïdes de classe D Surface de couleur rouge, censée provenir de l'accumulation de composées carbonés.
Astéroïdes de classe P Riches en métaux (astéroïdes métalliques, métalliques-pierreux). Chondrites à enstatite et métalliques.
Astéroïdes de classe M Spectre avec des raies d'absorption pour le Fer, le Nickel et quelques autres métaux. Albédo assez fort : environ 0.1–0.2. Astéroïdes proches du Soleil, localisés dans la ceinture interne (Distance au Soleil < 2,7 UA).
Astéroïdes de classe W Spectre similaire aux astéroïdes de classe M, avec présence d'eau (raie d'absorption à 3µm).
Astéroïdes de classe S Spectre avec les raies d'absorption des principaux silicates. Riches en silicates (astéroïdes pierreux). Chondrites ordinaires.
Astéroïdes de classe V Chondrites basaltiques.

Un fait important est que ces classes semblent réparties d'une manière bien précise dans le système solaire. Les astéroïdes de type M sont les plus proches du Soleil, les type S sont à des distances intermédiaires et les type C sont les plus éloignés. Cela colle assez bien avec ce que l'on a vu dans les chapitres précédents et leur composition chimique présumée. On a vu que lors de la formation du système solaire, les éléments se sont répartis dans le système solaire en fonction de leur point de fusion : les métaux réfractaires sont restés proches du Soleil, les silicates intermédiaire sont restés en position médiane, alors que les composés carbonés volatils se sont concentrés en périphérie.

Il est possible de comparer ces types spectraux avec ceux de certaines météorites. Et de telles comparaisons permettent parfois de retrouver quel est le corps dont proviennent les météorites. C'est par de telles comparaisons que l'on a découvert la provenance des météorites HED : ce sont des fragments de l’astéroïde Vesta. Les spectres de l’astéroïde Vesta et des météorites HED sont en effet quasiment identiques, avec une précision remarquable ! Mais une telle correspondance est relativement rare. Par exemple, la comparaison entre astéroïdes de types S et chondrites ordinaires est moins précise, quoique suffisamment pour que l'on soupçonne un lien assez étroit.

Un gros problème pour la classification spectrale est l'érosion par le vent solaire. La surface des astéroïdes, soumise au rayonnement solaire et aux particules du vent solaire, subit diverses modifications chimiques et physiques, du fait de l'érosion spatiale. Classer les astéroïdes demande donc de tenir compte de l'effet de l'érosion spatiale. Pour les astéroïdes de type S, si on calcule le type spectral en retirant l'effet de l’altération spatiale, la correspondance avec les chondrites ordinaires est assez impressionnante ! Des études similaires nous disent que les astéroïdes de type M correspondraient aux météorites ferreuses, alors que les astéroïdes de type C seraient les corps parents des chondrites carbonées. Chose que l'on pouvait déjà deviner compte tenu de la composition chimique supposée de ces astéroïdes.

La distribution des tailles et collisions

Les astéroïdes ne sont pas des cailloux qui ne changent jamais : la gravité et les collisions entre astéroïdes ont modifié leur forme et leur surface. Au niveau de la forme, la gravité a un grand rôle à jouer. Seuls les gros astéroïdes ont une forme sphérique, du fait de la gravité, alors que les astéroïdes de petite taille n'ont pas une gravité suffisante pour s'arrondir. Pour ce qui est de la taille, le processus principal est clairement les collisions entre astéroïdes. Les astéroïdes d'une grande taille possèdent des cratères d'impact sur leur surface, preuve qu'ils sont entrés en collision avec de petits astéroïdes. Les collisions permettent de faire grossir les astéroïdes, tout comme elles peuvent les faire rétrécir. Quand un petit astéroïde s'écrase sur un gros astéroïde, ce dernier acquière la masse de l'impacteur et grossit donc. Mais quand deux astéroïdes de taille égales entrent en collisions, le résultat est tout autre. Une petite collision a peu d'effets : les deux astéroides rebondissement l'un sur l'autre, sans plus. Mais si la collision est plis violente, les astéroïdes peuvent se casser sous la force de l'impact.

Des collisions extrêmement violentes entre astéroïdes sont possibles, si leurs orbites se croisent au bon moment. Les plus puissantes sont capables de casser les astéroïdes entrant en collision, les réduisant en morceaux plus petits. Si la collision est assez violente, les fragments se séparent pour de bon et s'éloignent les uns des autres. Les astéroïdes formés ainsi ont une forme assez irrégulière, éloignée d'une forme sphérique. On les reconnait aussi au fait que les astéroïdes nés de la fragmentation d'un corps parent orbitent tous les uns à coté des autres. Cela tient au fait que les fragments tendent à rester autour du centre de masse initial du fait de la gravité. Ils restent donc sur des orbites assez proches.

Si les collisions les plus violentes peuvent dissocier des astéroïdes et les faire s'éloigner, d'autres collisions sont moins violentes. Elles peuvent casser des astéroides en morceaux, mais les morceaux n'acquièrent pas une vitesse suffisante pour s'éloigner les uns des autres. La gravité fait retomber les fragments, qui se regroupent et s’agglomèrent pour former un tas de cailloux intersidéral. Le résultat est une boule de cailloux posés les uns contre les autres, avec des vides entre les fragments, appelée en anglais un rubble pile. De telles rubble pile ne survivent cependant pas longtemps et finissent par se disloquer, du fait d'interactions gravitaires et d'effets de marée avec d'autres astéroïdes.

La distribution des tailles : une loi de puissance

Si on regarde la distribution des tailles, on remarque que celle-ci suit une loi de puissance, comme disent les scientifiques. La formulation de cette loi dit que le nombre d'astéroïdes qui ont un rayon à près est de :

On peut reformuler cette équation en donnant le nombre d’astéroïde de rayon supérieur à r :

Divers résultats théoriques permettent de retrouver cette loi de puissance et de préciser la valeur exacte des exposants. En théorie, et sous certaines hypothèses bien précises, on devrait avoir pour une population de petits corps à l'équilibre. La valeur prédite est assez proche de la valeur mesurée pour les astéroïdes, mais ne colle pas trop avec la valeur mesurée pour les comètes. Pour les astéroïdes, vaut approximativement 3,5, alors qu'il vaut 2,9 pour les comètes. Vraisemblablement, les astéroïdes ont réussit à atteindre un équilibre stable, alors que les comètes ne l'ont pas encore atteint. Une autre possibilité est que les hypothèses qui permettent de prédire la valeur de ne sont pas respectée. Divers processus, comme la fragmentation des comètes en-dehors de toute collision ou leur érosion par le vent solaire, doivent modifier l'exposant de la loi de puissance.

Répartition du nombre des astéroïdes en fonction de leur taille.

La localisation des astéroïdes dans le système solaire

Les astéroïdes sont généralement localisés sur des orbites relativement précises, riches en astéroïdes. Les astéroïdes situés sur des orbites similaires (qui ont des paramètres orbitaux similaires, pour être précis) sont regroupés dans ce qu'on appelle une famille.

La plupart des astéroïdes sont localisés entre Mars et Jupiter, dans la fameuse ceinture d'astéroïdes. Cette ceinture serait le vestige d'une planète ratée, qui n'aurait pas pu se constituer pleinement, en raison des interactions gravitationnelles de Jupiter. Cette ceinture n'est cependant une ceinture continue, vu que des trous circulaires coupent cette ceinture en plusieurs bandes indépendantes. Ces trous, les lacunes de Kirkwood sont causées par des interactions gravitationnelles (des résonances) avec la planète Jupiter.

Les astéroïdes proches de l'orbite terrestres sont appelés les Near-Earth Objets. Ils sont surveillés de manière assez étroite par les astronomes, vu qu'ils ont un risque non-négligeable d'entrer en collision avec la Terre. Les astronomes en ont détecté plus de 10 000, et leur nombre augmente régulièrement avec l'accumulation des observations. Selon leur orbite, ils sont classés en plusieurs familles, qui ont reçu le nom d'amor, apollo, aten et apohele. Les astéroïdes de la classe appollo sont de loin les plus nombreux et représentent près de 50% des Near-Earth Objets. Les astéroïdes amor représentent quant à eux près de 40% des Near-Earth Objets. Les astéroïdes de la classe aten représentent quant à eux la quasi-totalité du reste, la classe apohele ne représentant moins d'1% du total. Pour les quatre classes, les astéroïdes proviennent surtout de la ceinture d'astéroïde, d'où ils ont été éjectés par des phénomènes de résonance orbitale. Une autre source, bien plus mineure, sont les comètes mortes qui sont capturées par la gravité solaire et changent d'orbite.

Les vulcanoïdes sont des astéroïdes très proches du Soleil, situés pas loin de l'orbite de Mercure. Ils forment une petite ceinture d'astéroïde, similaire à la ceinture d’astéroïde principale, mais bien moins fournie en astéroïdes.

Certains astéroïdes se situent sur l'orbite même de Jupiter, plus précisément sur les points de Lagrange de l'orbite de Jupiter. Ces astéroïdes sont appelés astéroïdes troyens.

Le groupe des astéroïdes centaures se situent sur des orbites très elliptiques, qui dépassent Jupiter mais ne dépassent pas l'orbite de Neptune.

Localisation de l'orbite des vulcanoïdes (en anglais).
Orbite des Near-Earth Objets.
Localisation de la ceinture d’astéroïde et des troyens.

Les orbites des astéroïdes

Les astéroïdes et comètes ont naturellement une trajectoire liée à la gravité, la force centrale du Soleil leur donnant une orbite elliptique. Mais, chose nettement évidente, la lumière du Soleil agit aussi sur les orbites des petits corps. Divers phénomènes physiques et thermiques liés à la lumière solaire et auvent solaire peuvent influencer l'orbite des petits corps. En toute généralité, ces phénomènes touchent tout corps gravitant autour d'une étoile, ici le Soleil. Mais ces phénomènes agissent sur la surface des planètes, seule à recevoir la lumière solaire, et non sur leur volume comme le fait la gravité. En conséquence, ces forces se manifestent quand leur intensité par rapport à la force de gravité se fait suffisante. Cela n'arrive que pour les corps dont le rapport surface/volume est suffisamment grand, seuls les petits corps étant dans ce cas. Nous allons donc voir : la pression de radiation, l'effet Yarkovsky et l'entrainement de Poynting-Robertson.

Les forces de frictions (vent solaire et disque planétaire)

Nous ne détaillerons pas les effets du vent solaire et du gaz interplanétaire. Tout au plus peut-on dire que le vent solaire souffle sur les astéroïdes et les éloigne lentement du Soleil. Pour ce qui est des gaz interplanétaire, on va se borner à dire que les astéroïdes vont frotter sur les gaz du disque interplanétaire, ce qui a tendance à les ralentir. Ce mécanisme est analogue à la friction de l'air qui ralentit les astéroïdes qui rentrent dans l’atmosphère, mais avec une intensité nettement moindre. Ce ralentissement dépend naturellement de la densité du gaz, ce qui explique sa faiblesse comparée à l'entrée dans l'atmosphère.

L'effet de la pression de radiation

La pression de radiation la pression que la lumière exerce sur les corps qu'elle illumine. Toute onde électromagnétique (ou tout photon) transporte une certaine impulsion, une certaine "quantité de mouvement". Lorsque la lumière interagit avec un objet, elle peut lui céder tout ou partie de son impulsion, qui sera convertie en quantité de mouvement. Si la lumière est absorbée, toute son impulsion sera transformée en quantité de mouvement. Si elle est réfléchie, une partie de son impulsion peut être transmise, mais la lumière changera alors de longueur d'onde : on est dans un cas de diffusion inélastique. Les lois de l'électromagnétisme nous disent qu'un corps noir (ici, le Soleil) engendre une pression de radiation égale à :

La force induite par cette pression de radiation dans le cas du Soleil est donnée par l'équation suivante. On peut remarquer le coefficient qui dépend de l'absorption. Il vaut 1 pour un corps totalement absorbant et diminue en même temps que l'albédo augmente.

Vu que la pression de radiation et la force de gravité ont toutes deux une dépendance en , on peut reformuler la gravité vue par l’astéroïde comme suit :

Le coefficient beta donne l'intensité de la pression de radiation par rapport à la gravité.

L'effet Yarkovsky

Effet Yarkovsky.

L'effet Yarkovsky, du nom de son découvreur, agit sur des astéroïdes de petite taille, maximum 30 à 40 kilomètres de diamètre. Il s'agit d'un effet extrêmement faible, bine plus que l'effet de la gravitation. En conséquence, il n'agit que sur des durées très longues, de plusieurs millions d'années.

Il apparait quand un astéroïde est éclairé par le Soleil et provient de la rotation de l'astéroïde et de son inertie thermique. Dans les grandes lignes, l'astéroïde absorbe le rayonnement solaire et le réémet un peu plus tard sous la forme d'un rayonnement de corps noir. Vu que le rayonnement transporte de l'impulsion, de la quantité de mouvement, qui dit émission de lumière dit émission de quantité de mouvement. En réémettant de la lumière, l'astéroïde réémet de la quantité de mouvement et subit donc un léger recul. Cette fuite de quantité de mouvement n'est pas censée engendrer de force si l'émission est isotrope, mais ce n'est pas le cas si l'astéroïde tourne sur lui-même.

Le petit corps est chauffé par le Soleil, durant la journée. La portion éclairée du satellite devient ainsi plus chaude que la portion non-éclairée. Mais le sol de l'astéroïde a une certaine inertie thermique : il met du temps à refroidir quand la nuit tombe. Ce faisant, la portion de l’astéroïde qui est en soirée et s’apprête à passer dans la nuit sera encore assez chaude. Par contre, la portion matinale de l’astéroïde sera totalement refroidie. Il existe donc une différence de température entre les deux côtés soirée-matinée de l'astéroïde. Les deux portions de l’astéroïde émettront de la lumière, mais la partie en soirée émettra plus de lumière. Du fait des différences de température entre matinée et soirée, ce n'est pas le cas : les fuites ne sont pas isotropes. Ce faisant, la différence de fuite de quantité de mouvement entre la soirée et le matin engendrera un couple, et une force de Yarkovsky qui dévieront l’astéroïde de sa trajectoire. Cela pousse l’astéroïde dans le sens opposé de la portion en soirée, soit dans le sens de rotation de l'objet.