43 700
modifications
: <math>P(k) = 2 \pi \int_0^{\infty} r^2 \cdot \frac{\sin kr}{kr} \cdot \epsilon(r) dr</math>
Dans le cas général, connaitre le spectre de puissance n'est pas suffisant pour décrire complètement le champ de densité, du moins d'un point de vue statistique. Il en est de même avec la fonction de corrélation qui est elle aussi un résumé imparfait de la distribution. Cependant, il existe des distributions statistiques pour lesquelles la connaissance du spectre de puissance et/ou de la fonction de corrélation suffit à décrire totalement les propriétés statistiques du champ décrit. Ce sont les '''champs aléatoires gaussiens''', pour lesquels la densité suit une distribution gaussienne (la fameuse courbe en cloche). Et ce sont ces gaussiennes qui sont utilisées pour modéliser le champ de densité cosmologique, faute de mieux. Le spectre de puissance de tels champs aléatoires gaussiens suit une loi de puissance de la forme :▼
: <math>P(k) = A \cdot k^n</math>
Il est supposé que les perturbations cosmologiques suivent une telle loi de puissance.
▲Dans le cas général, connaitre le spectre de puissance n'est pas suffisant pour décrire complètement le champ de densité, du moins d'un point de vue statistique. Il en est de même avec la fonction de corrélation qui est elle aussi un résumé imparfait de la distribution. Cependant, il existe des distributions statistiques pour lesquelles la connaissance du spectre de puissance et/ou de la fonction de corrélation suffit à décrire totalement les propriétés statistiques du champ décrit. Ce sont les '''champs aléatoires gaussiens''', pour lesquels la densité suit une distribution gaussienne (la fameuse courbe en cloche). Et ce sont ces gaussiennes qui sont utilisées pour modéliser le champ de densité cosmologique, faute de mieux.
Spectre de Harrison-Zeldovitch
===L'équation d'évolution des perturbations et le spectre de puissance===
|