Différences entre les versions de « Fonctionnement d'un ordinateur/Les architectures neuromorphiques »

Aller à la navigation Aller à la recherche
aucun résumé de modification
m (typo)
 
===Implémentation d'un neurone sous la forme de circuits===
 
Simuler le véritable comportement d'un neurone ou d'une synapse couteraitcoûterait vraiment beaucoup de circuits. A la place, les concepteurs de simulateurs logiciels et matériels utilisent des neurones simplifiés, dont la relation entre tension et courant (influx nerveux) est décrite par une équation relativement simple, et surtout approximative.
 
Le premier type de neurone se base sur un principe relativement simple : il modélise le principe qui est derrière la conduction de l'influx nerveux. Pour commencer, il faut savoir que l'influx nerveux n'est pas, comme on pourrait le croire, un courant électrique qui parcours l'axone et les dendrites. Les axones et les dendrites ne sont pas des câbles électriques. A la place, cet influx nerveux consiste en une onde de tension, qui se propage sur des segments d'axone, et éventuellement de dendrites (dans la suite, je ne parlerais que d'axone par simplicité).
 
Mais d'où sort cette onde de tension ? Simple : le neurone est une cellule comme une autre, dans laquelle l'intérieur et l'extérieur sont séparés par une membrane : la membrane plasmique. Des deux cotéscôtés de cette membrane, on trouve respectivement le milieu intra-cellulaire (dans la cellule), et extra-cellulaire (en-dehors de la cellule). Ces deux milieux sont composés d'une solution qui mélange de l'eau, diverses molécules, et surtout : quelques ions, des atomes de charge non-neutre. En conséquence, chacun de ces milieux est relativement conducteur. L'ensemble forme donc un ensemble formé de deux milieux conducteurs, séparés par une membrane isolante. Deux morceaux de conducteur séparés par un isolant, cela ressemble fortement à un composant électronique que l'on nomme le condensateur. Conséquence : la membrane se comporte comme un condensateur.
 
Des deux cotéscôtés de la membrane, les quantités d'ions ne sont pas les mêmes. Par exemple, les quantités de calcium, potassium, et sodium, changent suivant le côté de la membrane où l'on se place. Cela vient du fait que la membrane est percée par de nombreuses molécules qui servent de pompes. Ces pompes vont expulser les ions d'un cotécôté de la membrane vers l'autre cotécôté. Ces pompes vont fonctionner jusqu'à ce que la concentration en ions de l'autre cotécôté de la membrane devienne trop forte. En conséquence, l'intérieur et l'extérieur sont chargés différemment, donnant naissance à une tension de repos, d'environ -70 millivolts. Ces pompes peuvent donc se modéliser comme une tension de repose fixe, de -70 millivolts à -30 millivolts (selon le neurone).
 
Lors de l'émission d'un influx nerveux, de petites portes moléculaires vont s'ouvrir dans la membrane, et vont laisser passer sélectivement certains ions, et pas les autres. Ainsi, on va trouver des portes pour le potassium, d'autres pour le sodium, etc. Ces portes, des canaux ioniques, vont donc plus ou moins laisser passer un courant d'ions. Conséquence : ceux-ci sont modélisés par des résistances variables, qui laisseront plus ou moins bien passer le courant. En supposant que seul un seul type d'ion puisse passer la membrane, on trouve alors un condensateur, et une seule résistance. Si on suppose que plusieurs types d'ions peuvent passer la membrane, alors on trouve un modèle plus complexe, composé de plusieurs condensateurs et résistances en parallèle. Si les ions choisis sont le potassium, le sodium, et le calcium, les résistances et condensateurs auront des conductances et capacités d'une certaine valeur : on trouve un '''modèle de type Hodgin-huxley'''.
==Conclusion==
 
Si vous voulez un apercuaperçu de l'état de l'art sur le sujet, voici des liens qui devraient vous intéresser :
 
* [http://www.scholarpedia.org/article/Silicon_neurons Silicon Neurons] ;

Menu de navigation