« Compression de données/Introduction » : différence entre les versions

Un livre de Wikilivres.
Contenu supprimé Contenu ajouté
Koko90 (discussion | contributions)
Ligne 69 : Ligne 69 :
Elle donne de moins bons taux de compression que d'autres algorithmes (PPM, CM), mais a le double avantage d'être rapide et asymétrique (c'est-à-dire que l'algorithme de décompression est différent de celui de compression, ce qui peut être exploité pour avoir un algorithme de compression performant et un algorithme de décompression rapide).
Elle donne de moins bons taux de compression que d'autres algorithmes (PPM, CM), mais a le double avantage d'être rapide et asymétrique (c'est-à-dire que l'algorithme de décompression est différent de celui de compression, ce qui peut être exploité pour avoir un algorithme de compression performant et un algorithme de décompression rapide).


LZ77 est notamment la base d'algorithmes répandus comme [[Deflate]] ([[Zip]], [[Gzip]]) ou [[LZMA]] ([[7-Zip]])
LZ77 est notamment la base d'algorithmes répandus comme [[Deflate]] ([[ZIP (format de fichier)|ZIP]], [[Gzip]]) ou [[LZMA]] ([[7-Zip]])


LZW. Est basée sur la même méthode. Mais Welch a constaté que en créant un dictionnaire initial de tous les symboles possibles la compression était améliorée puisque le décompresseur peut recréer le dictionnaire initial et ne doit donc pas le transmettre ni envoyer les premiers symboles. Elle a été brevetée par UNISYS et ne peut donc être utilise librement. Elle sert dans les modems, mais UNISYS s'est engagé à vendre une licence à tout fabricant avant d'être acceptée comme norme de compression internationale pour les modems.
LZW. Est basée sur la même méthode. Mais Welch a constaté que en créant un dictionnaire initial de tous les symboles possibles la compression était améliorée puisque le décompresseur peut recréer le dictionnaire initial et ne doit donc pas le transmettre ni envoyer les premiers symboles. Elle a été brevetée par UNISYS et ne peut donc être utilise librement. Elle sert dans les modems, mais UNISYS s'est engagé à vendre une licence à tout fabricant avant d'être acceptée comme norme de compression internationale pour les modems.
Ligne 153 : Ligne 153 :


*Note 1 : Certains algorithmes peuvent être brevetés.
*Note 1 : Certains algorithmes peuvent être brevetés.
*Note 2 : Le format [[TIFF]] ''[[Encapsulation (programmation)|encapsule]]'' un mode de codage de l'image, qui peut être compressée ou non, avec l'un des algorithmes sus-cités.
*Note 2 : Le format [[Tagged Image File Format|TIFF]] ''[[Encapsulation (programmation)|encapsule]]'' un mode de codage de l'image, qui peut être compressée ou non, avec l'un des algorithmes sus-cités.
*Note 3 : [[JPEG 2000]] possède un mode sans perte (utilisant une transformée en ondelettes réversible) en plus du mode standard avec pertes, d'où sa présence dans les 2 parties du tableau.
*Note 3 : [[JPEG 2000]] possède un mode sans perte (utilisant une transformée en ondelettes réversible) en plus du mode standard avec pertes, d'où sa présence dans les 2 parties du tableau.



Version du 8 juin 2009 à 13:20

En informatique, la compression de données consiste à réduire l'espace nécessaire à la représentation d'une certaine quantité d'information. Elle peut intervenir aussi bien lors de la transmission que lors du stockage des données. Elle fait partie des applications de la théorie de l'information.

Les méthodes de compressions sont de deux types, compression avec perte — également dite non conservative — et compression sans perte.

Compression sans perte

La compression est dite sans perte lorsqu'il n'y a aucune perte de données sur l'information d'origine. Il y a autant d'information après la compression qu'avant, elle est seulement réécrite d'une manière plus concise (c'est par exemple le cas de la compression gzip pour n'importe quel type de données ou du format PNG pour des images synthétiques destinées au Web[1]). La compression sans perte est dite aussi compactage.

L'information à compresser est vue comme la sortie d'une source de symboles qui produit des textes finis selon certaines règles. Le but est de réduire la taille moyenne des textes obtenus après la compression tout en ayant la possibilité de retrouver exactement le message d'origine (on trouve aussi la dénomination codage de source en opposition au codage de canal qui désigne le codage correcteur d'erreurs).

Les formats de fichier de compression sans perte sont connus grâce à l'extension ajoutée à la fin du nom de fichier (« nomdefichier.zip » par exemple), d'où leur dénomination très abrégée. Les formats les plus courants sont :

  • 7z
  • ace
  • arc
  • arj
  • bz, bz2 (tar peut être utilisé pour créer les archives de ce type)
  • CAB, utilisé par Microsoft
  • gzip, gz (qui est un fichier à une seule entrée, tar peut être utilisé pour créer les archives de ce type)
  • KGB
  • lzh
  • rar
  • uha
  • Z (surtout sous Unix)
  • Zip
  • zoo
  • FLAC (pour les flux audio)

Les standards ouverts les plus courants sont décrits dans plusieurs RFC :

  • RFC 1950 (ZLIB, flux de données compressées)
  • RFC 1951 (système de compression par blocs « DEFLATE », utilisé par zip et gz)
  • RFC 1952 (format de fichier compressé GZIP)

Sur les limites de la compression sans perte, voir Paradoxe du compresseur.

Codage RLE

Pour plus de détails voir : run-length encoding.

Les lettres RLE signifient run-length encoding. Il s'agit d'un mode de compression parmi les plus simples : toute suite de bits ou de caractères identiques est remplacée par un couple (nombre d'occurrences ; bit ou caractère répété).
Exemple: AAAAAAAAZZEEEEEER donne : 8A2Z6E1R, ce qui est beaucoup plus court.

Compression CCITT

Pour plus de détails voir : Compression CCITT.

C'est une compression d'images utilisée pour le fax, standardisée par des recommandations de l'Union internationale des télécommunications (anciennement appelée CCITT). Elle est de type RLE (on code les suites horizontales de pixels blancs et de pixels noirs) et peut-être bidirectionnelle (on déduit une ligne de la précédente). Il existe plusieurs types de compressions ("groupes") suivant l'algorithme utilisé et le nombre de couleurs du document (monochrome, niveau de gris, couleur).

Deux compressions existent, celle du Groupe 3 (recommandation ITU T.4) et celle du Groupe 4 (recommandation ITU T.6), utilisées pour les fax :

  • Le Groupe 3 utilise comme indiqué une compression RLE, mais les symboles représentant les longueurs sont définis par le CCITT en fonction de leur fréquence probable et ceci pour diminuer la taille des messages à transmettre par les fax.
  • La compression du Groupe 4, elle, représente une ligne par les différences avec la ligne précédente. Ainsi un carré noir sur une page blanche n'aura que la première ligne du carré à transmettre, les suivantes étant simplement la "différence", c'est-à-dire rien. Et la page complète revient à envoyer 3 lignes et un symbole de "répéter la précédente" pour toutes les autres.

Ceci est théorique! En fait plus de symboles seront à transmettre, mais envoyer une page blanche est quand même beaucoup plus rapide en Groupe 4 que en Groupe 3.

Codage de Huffman

Pour plus de détails voir : codage de Huffman.

L'idée qui préside au codage de Huffman est voisine de celle utilisée dans le code Morse : coder ce qui est fréquent sur peu de place, et coder en revanche sur des séquences plus longues ce qui revient rarement (entropie). En morse le « e », lettre très fréquente, est codé par un simple point, le plus bref de tous les signes.

L'originalité de David A. Huffman est qu'il fournit un procédé d'agrégation objectif permettant de constituer son code dès lors qu'on possède les statistiques d'utilisation de chaque caractère.

Le Macintosh d'Apple codait les textes dans un système inspiré de Huffman : les 15 lettres les plus fréquentes (dans la langue utilisée) étaient codées sur 4 bits, et la 16e combinaison était un code d'échappement indiquant que la lettre était codée en ASCII sur les 8 bits suivants. Ce système permettait une compression des textes voisine en moyenne de 30 % à une époque où la mémoire était extrêmement chère par rapport aux prix actuels (compter un facteur 1000).

Le défaut du codage Huffman est qu'il doit connaître la fréquence des caractères utilisés dans un fichier avant de choisir les codes optimaux. Et il doit donc lire tout le fichier avant de comprimer! Une autre conséquence est que pour décomprimer il faut connaître les codes et donc la table, qui est ajoutée devant le fichier, aussi bien pour transmettre que stocker, ce qui diminue la compression, surtout pour les petits fichiers. Ce problème est éliminé par le codage Huffman adaptatif, qui modifie sa table au fil des choses. Et peut donc démarrer avec une table de base. En principe il commence avec les caractères à même probabilité.

Lempel-Ziv 1977 (LZ ou LZ77)

Pour plus de détails voir : LZ77 et LZ78.

La compression Lempel-Ziv remplace des motifs récurrents par des références à leur première apparition.

Elle donne de moins bons taux de compression que d'autres algorithmes (PPM, CM), mais a le double avantage d'être rapide et asymétrique (c'est-à-dire que l'algorithme de décompression est différent de celui de compression, ce qui peut être exploité pour avoir un algorithme de compression performant et un algorithme de décompression rapide).

LZ77 est notamment la base d'algorithmes répandus comme Deflate (ZIP, Gzip) ou LZMA (7-Zip)

LZW. Est basée sur la même méthode. Mais Welch a constaté que en créant un dictionnaire initial de tous les symboles possibles la compression était améliorée puisque le décompresseur peut recréer le dictionnaire initial et ne doit donc pas le transmettre ni envoyer les premiers symboles. Elle a été brevetée par UNISYS et ne peut donc être utilise librement. Elle sert dans les modems, mais UNISYS s'est engagé à vendre une licence à tout fabricant avant d'être acceptée comme norme de compression internationale pour les modems.

Lempel-Ziv 1978 et Lempel-Ziv-Welch (LZ78 et LZW)

Pour plus de détails voir : Lempel-Ziv-Welch.

La compression Lempel-Ziv-Welch est dite de type dictionnaire. Elle est basée sur le fait que des motifs se retrouvent plus souvent que d'autres et qu'on peut donc les remplacer par un index dans un dictionnaire. Le dictionnaire est construit dynamiquement d'après les motifs rencontrés.

Transformée de Burrows-Wheeler (BWT)

Pour plus de détails voir : Transformée de Burrows-Wheeler.

Il s'agit d'un mode de réorganisation des données et non un mode de compression. Il est principalement destiné à faciliter la compression de texte en langue naturelle, mais il est également utilisable pour compresser n'importe quelles données binaires. Cette transformation, qui est complètement réversible, effectue un tri sur toutes les rotations du texte source, ce qui tend à regrouper les caractères identiques ensemble en sortie, ce qui fait qu'une compression simple appliquée aux données produites permet souvent une compression très efficace.

Prédiction par reconnaissance partielle (PPM)

Pour plus de détails voir : Prédiction par reconnaissance partielle.

La prédiction par reconnaissance partielle se base sur une modélisation de contexte pour évaluer la probabilité des différents symboles. En connaissant le contenu d'une partie d'une source de données (fichier, flux…), un PPM est capable de deviner la suite, avec plus ou moins de précision. Un PPM peut être utilisé en entrée d'un codage arithmétique par exemple.

La prédiction par reconnaissance partielle donne en général de meilleurs taux de compression que des algorithmes à base de Lempel-Ziv, mais est sensiblement plus lente.

Note : PPM est également utilisé pour l'autocomplétion des commandes dans certains systèmes Unix.

Codage arithmétique

Pour plus de détails voir : Codage arithmétique.

Le codage arithmétique est assez similaire au codage de Huffman en ceci qu'il associe aux motifs les plus probables les codes les plus courts (entropie). Contrairement au codage de Huffman qui produit au mieux des codes de 1 bit, le codage arithmétique peut produire des codes vides. Le taux de compression obtenu est par conséquent meilleur.

Pondération de contextes (CM)

Pour plus de détails voir : Pondération de contextes.

La pondération de contextes consiste à utiliser plusieurs prédicteurs (par exemple des PPM) pour obtenir l'estimation la plus fiable possible du symbole à venir dans une source de données (fichier, flux…). Elle peut être basiquement réalisée par une moyenne pondérée, mais les meilleurs résultats sont obtenus par des méthodes d'apprentissage automatique comme les réseaux de neurones.

La pondération de contextes est très performante en termes de taux de compression, mais est d'autant plus lente que le nombre de contextes est important.

Actuellement, les meilleurs taux de compression sont obtenus par des algorithmes liant pondération de contextes et codage arithmétique, comme PAQ.

Compression avec pertes

La compression avec pertes ne s'applique qu'aux données « perceptuelles », en général sonores ou visuelles, qui peuvent subir une modification, parfois importante, sans que cela ne soit perceptible par un humain. La perte d'information est irréversible, il est impossible de retrouver les données d'origine après une telle compression. La compression avec perte est pour cela parfois appelée compression irréversible ou non conservative.

Cette technique est fondée sur une idée simple : seul un sous-ensemble très faible de toutes les images possibles (à savoir celles que l'on obtiendrait par exemple en tirant les valeurs de chaque pixel par un générateur aléatoire) possède un caractère exploitable et informatif pour l'œil. Ce sont donc ces images-là qu'on va s'attacher à coder de façon courte. Dans la pratique, l'œil a besoin pour identifier des zones qu'il existe des corrélations entre pixels voisins, c'est-à-dire qu'il existe des zones contiguës de couleurs voisines. Les programmes de compression s'attachent à découvrir ces zones et à les coder de la façon aussi compacte que possible. La norme JPEG 2000, par exemple, arrive généralement à coder des images photographiques sur 1 bit par pixel sans perte visible de qualité sur un écran, soit une compression d'un facteur 24 à 1.

Puisque l'œil ne perçoit pas nécessairement tous les détails d'une image, il est possible de réduire la quantité de données de telle sorte que le résultat soit très ressemblant à l'original, voire identique, pour l'œil humain. La problématique de la compression avec pertes est d'identifier les transformations de l'image ou du son qui permettent de réduire la quantité de données tout en préservant la qualité perceptuelle.

De même, seul un sous-ensemble très faible de sons possibles est exploitable par l'oreille, qui a besoin de régularités engendrant elles-mêmes une redondance (coder avec fidélité un bruit de souffle n'aurait pas grand intérêt). Un codage éliminant cette redondance et la restituant à l'arrivée reste donc acceptable, même si le son restitué n'est pas en tout point identique au son d'origine.

On peut distinguer trois grandes familles de compression avec perte :

  • par prédiction, par exemple l'ADPCM ;
  • par transformation. Ce sont les méthodes les plus efficaces et les plus utilisées. (JPEG, JPEG 2000, l'ensemble des normes MPEG…) ;
  • compression basée sur la récurrence fractale de motifs (Compression fractale).

Les formats MPEG sont des formats de compression avec pertes pour les séquences vidéos. Ils incluent à ce titre des codeurs audio, comme les célèbres MP3 ou AAC, qui peuvent parfaitement être utilisés indépendamment, et bien sûr des codeurs vidéos — généralement simplement référencés par la norme dont ils dépendent (ex: MPEG-2, MPEG-4), ainsi que des solutions pour la synchronisation des flux audio et vidéo, et pour leur transport sur différents types de réseaux.

Récapitulatif

Domaines
sans pertes
avec pertes
Huffman
Dictionnaire
Autre
DCT
Ondelette
Autre
Général
binaires/données
7z, LZW, Z, gzip, bzip2, zip RLE (Run-Length Encoding)
Audio FLAC, Wavpack, Monkey's Audio, Lossless Audio (LA) AAC, MP3, Ogg Vorbis, Speex ADPCM
Image GIF, PNG PCX (RLE), ILBM? (ou IFF), IMG?, CCITT, JPEG-LS, JPEG2000* JPEG DjVuPhoto, JPEG2000, ECW, MrSID*, SPIHT
Vidéo MJPEG2000 MJPEG, MPEG-1, MPEG-2, MPEG-4 MJPEG2000, Tarkin, Snow
  • Note 1 : Certains algorithmes peuvent être brevetés.
  • Note 2 : Le format TIFF encapsule un mode de codage de l'image, qui peut être compressée ou non, avec l'un des algorithmes sus-cités.
  • Note 3 : JPEG 2000 possède un mode sans perte (utilisant une transformée en ondelettes réversible) en plus du mode standard avec pertes, d'où sa présence dans les 2 parties du tableau.

Notes

  1. Ces 2 types de compressions gzip et PNG sont libres et non soumis à un brevet.

Bibliographie

Voir aussi

Articles connexes

Liens externes

Modèle:Palette informatique théorique

Modèle:Portail informatique