Fonctionnement d'un ordinateur/Les circuits de sélection

Un livre de Wikilivres.
Aller à la navigation Aller à la recherche

Dans les chapitres précédents, nous avons vu comment fabriquer des circuits relativement généraux. Il est maintenant temps de voir quelques circuits relativement simples, très utilisés. Ces circuits simples sont utilisés pour construire des circuits plus complexes, comme des processeurs, des mémoires, et bien d'autres. Les prochains chapitres vont se concentrer exclusivement sur ces circuits simples, mais courants. Nous allons donner quelques exemples de circuits assez fréquents dans un ordinateur et voir comment construire ceux-ci avec des portes logiques. Dans ce chapitre, nous allons nous concentrer sur quelques circuits, que j'ai décidé de regrouper sous le nom de circuits de sélection. Les circuits que nous allons présenter sont utilisés dans les mémoires, ainsi que dans certains circuits de calcul. Il est important de bien mémoriser ces circuits, ainsi que la procédure pour les concevoir : nous en aurons besoin dans la suite du cours. Ils sont au nombre de quatre : le décodeur, l'encodeur, le multiplexeur et le démultiplexeur.

Le décodeur[modifier | modifier le wikicode]

Décodeur à 3 entrées et 8 sorties.

Le premier circuit que nous allons voir est le décodeur, un composant qui contient un grand nombre d'entrées et de sorties, avec des sorties qui sont numérotées. Un décodeur possède une entrée sur laquelle on envoie un nombre codé bits et sorties de 1 bit. Par exemple, un décodeur avec une entrée de 2 bits aura 4 sorties, un décodeur avec une entrée de 3 bits aura 8 sorties, un décodeur avec une entrée de 8 bits aura 256 sorties, etc. Généralement, on précise le nombre de bits d'entrée et de sortie comme suit : on parle d'un décodeur X vers Y pour X bits d'entrée et Y de sortie. Ce qui fait qu'on peut parler de décodeur 3 vers 8 pour un décodeur à 3 bits d'entrée et 8 de sortie, de décodeur 4 vers 16, etc.

Le fonctionnement d'un décodeur est très simple : il prend sur son entrée un nombre entier x codé en binaire, puis il positionne à 1 la sortie numérotée x et met à zéro toutes les autres sorties. Par exemple, si on envoie la valeur 6 sur ses entrées, il mettra la sortie numéro 6 à 1 et les autres à zéro.

Pour résumer, un décodeur est un circuit :

  • avec une entrée de bits ;
  • avec sorties de 1 bit ;
  • où les sorties sont numérotées en partant de zéro ;
  • où on ne peut sélectionner qu'une seule sortie à la fois : une seule sortie devra être placée à 1, et toutes les autres à zéro ;
  • et où deux nombres d'entrée différents devront sélectionner des sorties différentes : la sortie de notre contrôleur qui sera mise à 1 sera différente pour deux nombres différents placés sur son entrée.

La table de vérité d'un décodeur[modifier | modifier le wikicode]

Au vu de ce qui vient d'être dit, on peut facilement écrire la table de vérité d'un décodeur. Pour l'exemple, prenons un décodeur 2 vers 4, pour simplifier la table de vérité. Voici sa table de vérité complète, c’est-à-dire qui contient toutes les sorties regroupées :

E0 E1 S0 S1 S2 S3
0 0 1 0 0 0
0 1 0 1 0 0
1 0 0 0 1 0
1 1 0 0 0 1

Vous remarquerez que la table de vérité est assez spéciale. Les seuls bits à 1 sont sur la diagonale. Et cela ne vaut pas que dans l'exemple choisit, mais cela se généralise pour tous les décodeurs. Cela se voit aussi quand on prend le tableau de Karnaugh d'un décodeur : il n'y a qu'un seul bit à 1 dans le tableau correspondant à une sortie.

Tableau de Karnaugh d'un décodeur 2 vers 4.

Sur chaque ligne, il n'y a qu'un seul bit à 1, ce qui traduit le fait qu'une entrée ne met qu'une seule sortie est à 1 et met les autres à 0. Si on traduit la table de vérité sous la forme d'équations logiques et de circuit, on obtient ceci :

Equations logiques et circuit d'un décodeur 2 vers 4.

Il y a des choses intéressantes à remarquer sur les équations logiques. Pour rappel, l'équation logique d'une sortie est composée, dans le cas général, soit d'un minterm unique, soit d'un OU entre plusieurs minterms. Chaque minterm est l'équation d'un circuit qui compare l'entrée à un nombre bien précis et dépendant du minterm. Si on regarde bien, l'équation de chaque sortie correspond à un minterm et à rien d'autre, il n'y a pas de OU entre plusieurs minterms. Les minterms sont de plus différents pour chaque sortie et on ne trouve pas deux sorties avec le même minterm. Enfin, chaque minterm possible est présent : X bits d'entrée nous donnent 2^X entrées différentes possibles, donc 2^X minterms possibles. Et il se trouve que tous ces minterms possibles sont représentés dans un décodeur, ils ont tous leur sortie associée. C'est une autre manière de définir un décodeur : toutes ses sorties codent un minterm, deux sorties différentes ont des minterms différents et tous les minterms possibles sur n bits sont représentés.

Ces informations vont nous être utiles pour la suite. En effet, grâce à elles, nous allons en déduire une méthode générale pour fabriquer un décodeur, peu importe son nombre de bits d'entrée et de sortie. Mais elles permettent aussi de montrer que l'on peut créer n'importe quel circuit combinatoire quelconque à partir d'un décodeur et de quelques portes logiques. Dans ce qui suit, on suppose que le circuit combinatoire en question a une entrée de n bits et une seule sortie de 1 bit. Pour rappel, ce genre de circuit se conçoit en utilisant une table de vérité qu'on traduit en équations logiques, puis en circuits. Le circuit obtenu est alors soit un simple minterm, soit un OU entre plusieurs minterms. Or, le décodeur contient tous les minterms possibles pour une entrée de n bits, avec un minterm par sortie. Il suffit donc de prendre une porte OU et de la connecter aux minterms/sorties adéquats.

Conception d'un circuit combinatoire quelconque à partir d'un décodeur.

Ceci étant dit, passons à la conception d'un décodeur avec des portes logiques.

L'intérieur d'un décodeur[modifier | modifier le wikicode]

On vient de voir que chaque sortie d'un décodeur correspond à son propre minterm, et que tous les minterms possibles sont représentés. Rappelons que chaque minterm est associé à un circuit qui compare l'entrée à une constante X, X dépendant du minterm. En combinant ces deux informations, on devine qu'un décodeur est simplement composé de comparateurs avec une constante que de minterms/sorties. Par exemple, si je prends un décodeur 7 vers 128, cela veut dire qu'on peut envoyer en entrée un nombre codé entre 0 et 127 et que chaque nombre aura son propre minterm associé : il y aura un minterm qui vérifie si l'entrée vaut 0, un autre vérifie si elle vaut 1, un autre qui vérifie si elle vaut 2, ... , un minterm qui vérifie si l'entrée vaut 126, et enfin un minterm qui vérifie si l'entrée vaut 127.

Pour reformuler d'une manière bien plus simple, on peut voir les choses comme suit. Si l'entrée du décodeur vaut N, la sortie mise à 1 est la sortie N. Bref, déduire quand mettre à 1 la sortie N est facile : il suffit de comparer l'entrée avec N. Si l'adresse vaut N, on envoie un 1 sur la sortie, et on envoie un zéro sinon. Pour cela, j'ai donc besoin d'un comparateur pour chaque sortie, et le tour est joué. Précisons cependant que cette méthode gaspille beaucoup de circuits et qu'il y a une certaine redondance. En effet, les comparateurs ont souvent des portions de circuits qui sont identiques et ne diffèrent parfois que ce quelques portes logiques. En utilisant des comparateurs séparés, ces portions de circuits sont dupliquées, alors qu'il serait judicieux de partager.

Exemple d'un décodeur à 8 sorties.

Comme autre méthode, plus économe en circuits, on peut créer un décodeur en assemblant plusieurs décodeurs plus simples, nommés sous-décodeurs. Ces sous-décodeurs sont des décodeurs normaux, auxquels on a ajouté une entrée RAZ, qui permet de mettre à zéro toutes les sorties : si on met un 0 sur cette entrée, toutes les sorties passent à 0, alors que le décodeur fonctionne normalement sinon. Construire un décodeur demande suffisamment de sous-décodeurs pour combler toutes les sorties. Si on utilise des sous-décodeurs à n entrées, ceux-ci prendront en entrée les n bits de poids faible de l'entrée du décodeur que l'on souhaite construire (le décodeur final). Dans ces conditions, les n décodeurs auront une de leurs sorties à 1. Pour que le décodeur final se comporte comme il faut, il faut désactiver tous les sous-décodeurs, sauf un avec l'entrée RAZ. Pour commander les n bits RAZ des sous-décodeurs, il suffit d'utiliser un décodeur qui est commandé par les bits de poids fort du décodeur final.

Décodeur 3 vers 8 conçu à partir de décodeurs 2 vers 4.

L'encodeur[modifier | modifier le wikicode]

Encodeur à 8 entrées (et 3 sorties).

Il existe un circuit qui fait exactement l'inverse du décodeur : c'est l'encodeur. Là où les décodeurs ont une entrée de bits et sorties de 1 bit, l'encodeur a à l'inverse entrées de 1 bit avec une sortie de bits. Par exemple, un encodeur avec une entrée de 4 bits aura 2 sorties, un décodeur avec une entrée de 8 bits aura 3 sorties, un décodeur avec une entrée de 256 bits aura 8 sorties, etc. Comme pour les décodeurs, on parle d'un encodeur X vers Y pour X bits d'entrée et Y de sortie. Ce qui fait qu'on peut parler de décodeur 8 vers 3 pour un décodeur à 8 bits d'entrée et 3 de sortie, de décodeur 16 vers 4, etc.

Entrées et sorties d'un encodeur.

De plus, contrairement au décodeur, ce sont les entrées qui sont numérotées de 0 à N et non les sorties. Dans ce qui suit, on va supposer qu'une seule des entrées est à 1. En sortie, l'encodeur donne le numéro de l'entrée qui est à 1. Par exemple, si l'entrée numéro 5 est à 1 et les autres à 0, alors l'encodeur envoie un 5 sur sa sortie.

L'encodeur 4 vers 2[modifier | modifier le wikicode]

Prenons l'exemple d'un encodeur à 4 entrées et 2 sorties. Écrivons sa table de vérité. D'après la description du circuit, on devrait trouver ceci :

Table de vérité d'un encodeur 4 vers 2
E3 E2 E1 E0 S1 S0
0 0 0 1 0 0
0 0 1 0 0 1
0 1 0 0 1 0
1 0 0 0 1 1

Vous voyez que la table de vérité est incomplète. En effet, l'encodeur fonctionne tant qu'une seule de ses entrées est à 1. L'encodeur dit alors quelle est la sortie à 1, mais cela suppose que les autres soient à 0. Si plusieurs entrées sont à 1, le comportement de l'encodeur est à préciser. Mais passons cela sous silence et ne tenons compte que de la table de vérité partielle précédente. On peut traduire cette table de vérité en circuit logique. On obtient alors les équations suivantes :

Le tout donne le circuit suivant :

Exemple d'encodeur à 4 entrées et 2 sorties.

Les encodeurs à plus de deux sorties[modifier | modifier le wikicode]

Il est possible de créer un encodeur complexe en combinant plusieurs encodeurs simples. C'est un peu la même chose qu'avec les décodeurs, pour lesquels on peut créer un décodeur 8 vers 256 à base de deux décodeurs 7 vers 128, ou de quatre décodeurs 6 vers 64. L'idée de découper le nombre d'entrée en morceaux séparés, chaque morceau étant traité par un encodeur à priorité distinct des autres. Les résultats des différents encodeurs sont ensuite combinés pour donner le résultat final.

Pour comprendre l'idée, prenons la table de vérité d'un encodeur 8 vers 3; donnée dans le tableau ci-dessous.

Table de vérité d'un encodeur 8 vers 3
E7 E6 E5 E4 E3 E2 E1 E0 S2 S1 S0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 1 0 0 0 0 1 1
0 0 0 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 1 0 1
0 1 0 0 0 0 0 0 1 1 0
1 0 0 0 0 0 0 0 1 1 1

En regardant bien, vous verrez que vous pouvez trouver la table de vérité d'un encodeur 4 vers 2 en deux exemplaires, indiquées en rouge.

Table de vérité d'un encodeur 8 vers 3
E7 E6 E5 E4 E3 E2 E1 E0 S2 S1 S0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 1 0 0 0 0 1 1
0 0 0 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 1 0 1
0 1 0 0 0 0 0 0 1 1 0
1 0 0 0 0 0 0 0 1 1 1

On voit que les deux bits de poids faibles correspondent à la sortie de l'encodeur activé par l'entrée. Si le premier encodeur est activé, c'est lui qui fournit les bits de poids faibles. Inversement, si c'est le second encodeur qui a un résultat non-nul, c'est lui qui fournit les bits de poids faible. Notons que seul un des deux encodeurs a une sortie non-nulle à la fois : soit le premier a une sortie non-nulle, soit c'est le second, mais c'est impossible que ce soit les deux en même temps. Cela permet de déduire quelle opération permet de mixer les deux résultats : un simple OU logique suffit. Car, pour rappel, 0 OU X donne X, quelque que soit le X en question. Les bits de poids faible du résultat se calculent en faisant un OU entre les deux résultats des encodeurs.

Ensuite, il faut déterminer comment fixer le bit de poids fort du résultat. Il vaut 0 si le premier encodeur a une entrée non-nulle, et 1 si c'est le premier encodeur qui a une entrée non-nulle. Pour cela, il suffit de vérifier si les bits de poids forts, associés au premier encodeur, contiennent un 1. Si c'est le cas, alors on met la troisième sortie à 1.

Encodeur fabriqué à partir d'encodeurs plus petits.

Notons que cette procédure, à savoir faire un OU entre les sorties de deux encodeurs simples, puis faire un OU pour calculer le troisième bit, marche pour tout encodeur de taille quelconque. A vrai dire, le circuit obtenu plus haut d'un encodeur 4 vers 2 est conçu ainsi, mais en combinant deux encodeurs 2 vers 1.

La procédure consiste à ajouter trois portes OU à deux encodeurs. Mais ceux-ci sont eux-même composés de portes OU associées à des encodeurs plus petits, et ainsi de suite. On peut poursuivre ainsi jusqu’à tomber sur des encodeurs 4 vers 2, qui sont eux-mêmes composés de deux portes OU. Au final, on se retrouve avec un circuit conçu uniquement à partir de portes OU. Notons qu'il est possible de simplifier le circuit obtenu avec la procédure en fusionnant des portes OU. Si on simplifie vraiment au maximum, le circuit consiste alors en une porte OU à plusieurs entrées par sortie, chacune étant connectée à certaines entrées bien précises. Pour un encodeur 8 vers 3, la simplification du circuit devrait donner ceci :

Encodeur 8 vers 3.

Le multiplexeur[modifier | modifier le wikicode]

Les décodeurs ont des cousins : les multiplexeurs. Ces multiplexeurs sont des composants qui possèdent un nombre variable d'entrées et une sortie. Le rôle d'un multiplexeur est de recopier le contenu d'une des entrées sur sa sortie. Bien sûr, il faut bien choisir l'entrée qu'on veut recopier sur la sortie : pour cela, notre multiplexeur contient une entrée de commande qui permet de spécifier quelle entrée doit être recopiée.

Multiplexeur à 4 entrées.

Le multiplexeur à deux entrées[modifier | modifier le wikicode]

Le multiplexeur le plus simple est le multiplexeur à deux entrées et une sortie. Il est facile de le construire avec des portes logiques, dans les implémentations les plus simples. Sachez toutefois que les multiplexeurs utilisés dans les ordinateurs récents ne sont pas forcément fabriqués avec des portes logiques, mais qu'on peut aussi les fabriquer directement avec des transistors.

Multiplexeur à deux entrées - symbole.

Pour commencer, établissons sa table de vérité. On va supposer qu'un 0 sur l'entrée de commande sélectionne l'entrée a. La table de vérité devrait être la suivante :

Entrée de commande Entrée a Entrée b Sortie
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

Sélectionnons les lignes qui mettent la sortie à 1 :

Entrée de commande Entrée a Entrée b Sortie
0 1 0 1
0 1 1 1
1 0 1 1
1 1 1 1

On sait maintenant quels comparateurs avec une constante utiliser. On peut, écrire l'équation logique du circuit. La première ligne donne l'équation suivante : , la seconde donne l'équation , la troisième l'équation et la quatrième l'équation . L'équation finale obtenue est donc :

L'équation précédente est assez compliquée, mais il y a moyen de la simplifier assez radicalement. Pour cela, nous allons utiliser les règles de l’algèbre de Boole. Pour commencer, nous allons factoriser et  :

Ensuite, factorisons dans le premier terme et dans le second :

Les termes et valent 1 :

On sait que , ce qui fait que l'équation simplifiée est la suivante :

Le circuit qui correspond est :

Multiplexeur à deux entrées - circuit.

Les multiplexeurs à plus de deux entrées[modifier | modifier le wikicode]

Il est possible de concevoir un multiplexeur quelconque à partir de sa table de vérité. Le résultat est alors un circuit composé d'une porte OU à plusieurs entrées, de plusieurs portes ET, et de quelques portes NON. Un exemple est illustré ci-dessous. Vous remarquerez cependant que ce circuit a un défaut : la porte OU finale a beaucoup d'entrées, ce qui pose de nombreux problèmes techniques. Il est difficile de concevoir des portes logiques avec un très grand nombre d'entrées. Aussi, les applications à haute performance demandent d'utiliser d'autres solutions.

Multiplexeur conçu à partir de sa table de vérité.

Une solution alternative est de concevoir un multiplexeur à plus de deux entrées en combinant des multiplexeurs plus simples. Par exemple, en prenant deux multiplexeurs plus simples, et en ajoutant un multiplexeur 2 vers 1 sur leurs sorties respectives. Le multiplexeur final se contente de sélectionner une sortie parmi les deux sorties des multiplexeurs précédents, qui ont déjà effectué une sorte de présélection.

Multiplexeur conçu à partir de multiplexeurs plus simples.

Il existe toutefois une manière bien plus simple pour créer des multiplexeurs : il suffit d'utiliser un décodeur, quelques portes OU, et quelques portes ET. L'idée est de :

  • sélectionner l'entrée à recopier sur la sortie ;
  • mettre les autres entrées à zéro ;
  • faire un OU entre toutes les entrées : vu que toutes les entrées non-sélectionnées sont à zéro, la sortie de la porte OU aura la même valeur que l'entrée sélectionnée.

Pour sélectionner l'entrée adéquate du multiplexeur, on utilise un décodeur : si la sortie n du décodeur est à 1, alors l'entrée numéro n du multiplexeur sera recopiée sur sa sortie. Dans ces conditions, l'entrée de commande du multiplexeur correspond à l'entrée du décodeur. Pour mettre à zéro les entrées non-sélectionnées, on ajoute une porte ET par entrée : vu que a.0=0 et a.1=a, la porte ET :

  • recopie l'entrée du multiplexeur si le décodeur sort un 1 ;
  • met à zéro l'entrée si le décodeur sort un 0.
Multiplexeur 2 vers 4 conçu à partir d'un décodeur.

Une autre manière d’expliquer le circuit précédent est d'utiliser la notion de masque vue au chapitre précédent. En effet, ce circuit applique un masque à l'entrée, afin de mettre à 0 les entrées non-sélectionnées. Il fait ensuite un OU entre tous les entrées. LE calcul du masque est réalisé par le décodeur.

On peut aussi simplifier le circuit en remplaçant les portes ET en aval du décodeur par des transistors dont la grille est commandée par le décodeur. Ce faisant, seule une entrée sera connectée à la sortie, alors que les autres seront déconnectées.

Le démultiplexeur[modifier | modifier le wikicode]

Après avoir vu le multiplexeur, il est temps de voir de démultiplexeur. Comme le nom l'indique, le démultiplexeur fait l'exact inverse du multiplexeur. Son rôle est de recopier, sur une des sorties, ce qu'il y a sur l'entrée. Évidemment, la sortie sur laquelle on recopie l'entrée est choisie parmi toutes les entrées possibles. Pour cela, le démultiplexeur possède une entrée de commande, sur laquele on envoie le numéro de la sortie de destination.

Le démultiplexeur à deux sorties[modifier | modifier le wikicode]

Le démultiplexeur le plus simple est le démultiplexeur à deux sorties. Il possède une entrée de donnée, une entrée de commande et deux sorties, toutes de 1 bit. Suivant la valeur du bit sur l'entrée de commande, il recopie le bit d'entrée, soit sur la première sortie, soit sur la seconde. Les deux sorties sont numérotées respectivement 0 et 1.

Démultiplexeur à 2 sorties.

On peut le concevoir facilement en partant de sa table de vérité.

Entrée de commande Select Entrée de donnée Input Sortie 1 Sortie 0
0 0 0 0
0 1 0 1
1 0 0 0
1 1 1 0

Le circuit obtenu est le suivant :

Démultiplexeur à deux sorties.

Les démultiplexeurs à plus de deux sorties[modifier | modifier le wikicode]

Il est parfaitement possible de créer des démultiplexeurs en utilisant les méthodes du chapitre sur les circuits combinatoires, comme ma méthode des minterms ou les tableaux de Karnaugh. On obtient alors un démultiplexeur assez simple, composé de deux couches de portes logiques : une couche de portes NON et une couche de portes ET à plusieurs entrées.

Démultiplexeur fabriqué avec une table de vérité.

Mais cette méthode n'est pas pratique, car elle utilise beaucoup de portes logiques et que les portes logiques avec beaucoup d'entrées sont difficiles à fabriquer. Pour contourner ces problèmes, on peut ruser. Ce qui a été fait pour les multiplexeurs peut aussi s'adapter aux démultiplexeurs : il est possible de créer des démultiplexeurs en assemblant des démultiplexeurs 1 vers 2. Évidemment, le même principe s'applique à des démultiplexeurs plus complexes : il suffit de rajouter des couches.

Circuit d'un démultiplexeur à 4 sorties, conçu à partir de démultiplexeurs à 2 sorties.

Un démultiplexeur peut aussi se fabriquer en utilisant un décodeur et quelques portes ET. Pour comprendre pourquoi, regardons la table de vérité d'un démultiplexeur à quatre sorties. Si vous éliminez le cas où l'entrée de donnée Input vaut 0, et que vous tenez compte uniquement des entrées de commande, vous retombez sur la table de vérité d'un décodeur. Cela correspond aux cases en rouge.

Input E0 E1 S0 S1 S2 S3
0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0
0 1 1 0 0 0 0
1 0 0 1 0 0 0
1 0 1 0 1 0 0
1 1 0 0 0 1 0
1 1 1 0 0 0 1

En réalité, Le fonctionnement d'un démultiplexeur peut se résumer comme suit : soit l'entrée Input est à 1 et il fonctionne comme un décodeur dont l'entrée est l'entrée de commande, soit l'entrée Input vaut 0 et sa sortie est mise à 0. On devine donc qu'il faut combiner un décodeur avec le circuit de mise à zéro vu dans le chapitre précédent. On devine rapidement que l'entrée Input commande la mise à zéro de la sortie, ce qui donne le circuit suivant :

Démultiplexeur conçu à partir d'un décodeur.