Implémentation d'algorithmes classiques/Algorithmes de pathfinding/A*
Apparence
Implémentation en python
[modifier | modifier le wikicode]Voici une implémentation de l'algorithme A* rédigée en Python :
def AStar(self,i__vertex_init_label, i__vertex_target_label):
"""
visit http://en.wikipedia.org/wiki/A*_search_algorithm for more information
"""
print 'A* : %s --> %s'%(i__vertex_init_label,i__vertex_target_label)
l__vertexTarget = self.getVertexByLabel(i__vertex_target_label) # get the target
l__vertexInit = self.getVertexByLabel(i__vertex_init_label) # get the source
if l__vertexTarget!= None:
# -- initialisation --
l__closedset = [] # The set of nodes already evaluated.
l__openset = [l__vertexInit] # The set of tentative nodes to be evaluated.
l__came_from = {} # The map of navigated nodes.
# discrete functions definition
l__g_score, l__h_score, l__f_score = {}, {}, {}
l__g_score[i__vertex_init_label] = 0 # g(x) = past-cost function
l__h_score[i__vertex_init_label] = l__vertexInit.m__AstarHeuristicEstimateDistance # h(x) = heuristic function
l__f_score[i__vertex_init_label] = l__h_score[i__vertex_init_label] # f(x) = g(x) + h(x) = distance-plus-cost- heuristic function
# -- end of innitialisation --
while len(l__openset)>0:
# -- choose the node in openset having the lowest f_score[] (estimated total distance) value --
l__min, i, l__index = 999999999, 0, 0
for l__vertex in l__openset:
if l__f_score[l__vertex.m__label]<l__min:
l__min = l__f_score[l__vertex.m__label]
l__index = i
i+=1
l__current_vertex = l__openset.pop(l__index)
del i, l__index
# -- end of choice --
print 'I choose \'%s\' vertex with f_score=%d.'%(l__current_vertex.m__label,l__min)
del l__min
if l__current_vertex.m__label == i__vertex_target_label:
# if we are on the target > end of the process
# and reconstruct the path to print it
print self.reconstruct_path(l__came_from,l__came_from[i__vertex_target_label]) + ' >> %s (score = %d)'%(i__vertex_target_label,l__g_score[i__vertex_target_label])
return '__ END __'
l__closedset.append(l__current_vertex) # current node is visited
l__successors = self.getSuccessors(l__current_vertex.m__number,C__MUTE) # get all successors
for l__successor in l__successors:
if l__successor.isInArray(l__closedset): # nothing to do, it is already visited
continue
l__current_edge = self.getEdge(l__current_vertex.m__number, l__successor.m__number,C__MUTE) # getting corresponding edge "current node"-->"successor"
l__tentative_g_score = l__g_score[l__current_vertex.m__label] + l__current_edge.m__weight
if not l__successor.isInArray(l__openset):
l__openset.append(l__successor) # adding the successor to the openset to visit it later
l__tentative_is_better = True # it is the first tentative for this node
elif l__tentative_g_score < l__g_score[l__successor.m__label]:
l__tentative_is_better = True
else:
l__tentative_is_better = False
if l__tentative_is_better:
# update the functions dictionnaries if the tentative is better
l__came_from[l__successor.m__label] = l__current_vertex
l__g_score[l__successor.m__label] = l__tentative_g_score
l__h_score[l__successor.m__label] = l__successor.m__AstarHeuristicEstimateDistance
l__f_score[l__successor.m__label] = l__g_score[l__successor.m__label] + l__h_score[l__successor.m__label]
return 'Target is not reachable'
else:
print 'Target does not exist'