Aller au contenu

Mathc initiation/Fichiers c : c24ca

Un livre de Wikilivres.


Sommaire

Installer et compiler ces fichiers dans votre répertoire de travail.

c16a.c
/* --------------------------------- */
/* save as c16a1.c                   */
/* --------------------------------- */
#include "x_hfile.h"
#include      "fa.h"
/* --------------------------------- */
int main(void)
{
double  a = -.5;
double  b = -.5;
pt2d    p = {a,b}; /* initialize first method */

int     n = 5;

 clrscrn();
 
 p = i_pt2d(a,b); /* initialize second method */
 
 printf(" Use Newton's method to approximate,        \n");
 printf(" the solutions of the following system :\n\n\n");

 printf("  | %s = 0    \n", feq);
 printf("  | %s = 0\n\n\n", geq);
 
 printf(" As a first approximation x = %.1f y = %.1f \n\n", a, b);
 
 stop();
 
  clrscrn();       
  p_newton_fxy(  n, f, g, p);   
  stop();        
   
  clrscrn();
  p = newton_fxy(  n, f, g, p); 
  printf(" the solutions of the following system is :\n\n\n");
  printf("         x = %f  y = %f  \n\n\n",p.x,p.y);

  printf(" f(%f,%f) = %f  \n",p.x,p.y, f(p.x, p.y));
  printf(" g(%f,%f) = %f\n\n",p.x,p.y, g(p.x,p.y) );
  
  stop();

 return 0;
}
/* --------------------------------- */
/* --------------------------------- */


Voir le fichier x_nwtn.h pour étudier l'algorithme.

Exemple de sortie écran :

 Use Newton's method to approximate,        
 the solutions of the following system :


  | x**2 + y**2 - 1 = 0    
  | y - sin(x) = 0


 As a first approximation x = 0.5 y = 0.5 

 Press return to continue.


Exemple de sortie écran :

 x1		    =-0.500000		  y1		    =-0.500000
 delta_p.x1	=-0.277258		  delta_p.y1	=-0.222742

 x2		    =-0.777258		  y2		    =-0.722742
 delta_p.x2	=+0.036957		  delta_p.y2	=+0.047759

 x3		    =-0.740301		  y3		    =-0.674983
 delta_p.x3	=+0.001214		  delta_p.y3	=+0.001369

 x4		    =-0.739086		  y4		    =-0.673613
 delta_p.x4	=+0.000001		  delta_p.y4	=+0.000001

 x5		    =-0.739085		  y5		    =-0.673612

 Press return to continue.


Exemple de sortie écran :

 the solutions of the following system is :


         x = 0.739085  y = 0.673612  


 f(0.739085,0.673612) = 0.000003  
 g(0.739085,0.673612) = 0.000002

 Press return to continue.