Aller au contenu

Mathc initiation/a144

Un livre de Wikilivres.


Sommaire


Installer et compiler ces fichiers dans votre répertoire de travail.

c00c.c
/* ---------------------------------- */
/* save as c00c.c                     */
/* ---------------------------------- */
#include  "x_hfile.h"
#include       "fc.h"
/* ---------------------------------- */
int main(void)
{
double  t = 6;
double x,y;

 clrscrn();
 printf(" If \n\n" 
        " r(t) = f(t)i + g(t)j\n\n\n\n" 
        " and f, g are differentiable, then\n\n " 
        " r'(t) = f'(t)i + g'(t)j  \n\n\n\n" 
        " If f, g are two time differentiable, then\n\n " 
        " r''(t) = f''(t)i + g''(t)j \n\n\n\n");
 stop();

 clrscrn();
 printf(" Find r'(t) if  \n\n\n" 
        " r(t) = f(t)i + g(t)j \n\n\n" 
        " With \n\n\n");
 
 printf(" f : t-> %s    \n", feq);
 printf(" g : t-> %s  \n\n", geq);
 printf(" t = %+.2f \n\n\n", t);

     x = fx_x(f,t,H);
     y = fx_x(g,t,H);

 printf("  r'(t) = %+.2fi  %+.2fj  \n\n\n\n",x,y);
 stop();

 clrscrn();
 printf(" Find r''(t) if  \n\n\n" 
        " r(t) = f(t)i + g(t)j \n\n\n" 
        " With \n\n\n");
 
 printf(" f : t-> %s    \n", feq);
 printf(" g : t-> %s  \n\n", geq);
 printf(" t = %+.2f \n\n\n", t);

     x = fx_xx(f,t,H);
     y = fx_xx(g,t,H);

 printf("  r''(t) = %+.2fi  %+.2fj  \n\n\n\n",x,y);

 stop();

 return 0;
}
/* ---------------------------------- */
/* ---------------------------------- */


Exemple de sortie écran :

 If 

 r(t) = f(t)i + g(t)j



 and f, g are differentiable, then

  r'(t) = f'(t)i + g'(t)j  



 If f, g are two time differentiable, then

  r''(t) = f''(t)i + g''(t)j 



 Press return to continue.


Exemple de sortie écran :

 Find r'(t) if  


 r(t) = f(t)i + g(t)j 


 With 


 f : t-> 2*t    
 g : t-> 8 - 2*t**2  

 t = +6.00 


  r'(t) = +2.00i  -24.00j  



 Press return to continue.


Exemple de sortie écran :

 Find r''(t) if  


 r(t) = f(t)i + g(t)j 


 With 


 f : t-> 2*t    
 g : t-> 8 - 2*t**2  

 t = +6.00 


  r''(t) = +0.00i  -4.00j  



 Press return to continue.