Mathc initiation/a388
Apparence
Installer et compiler ces fichiers dans votre répertoire de travail.
c00c.c |
---|
/* ---------------------------------- */
/* save as c00c.c */
/* ---------------------------------- */
#include "x_afile.h"
#include "fc.h"
/* ---------------------------------- */
int main(void)
{
double i;
clrscrn();
printf(" Limit comparison test. \n\n\n");
printf(" Let S.a_n and S.b_n be positive-term series. \n\n");
printf(" If there is a positive real number c such that \n\n\n");
printf(" lim n->oo (a_n/b_n) = c >0 \n\n\n");
printf(" The either both series converge or both series diverge.\n\n");
stop();
clrscrn();
printf("# Copy and past this file into the screen of gnuplot\n\n"
" set zeroaxis lt 3 lw 1\n"
" set grid\n"
" plot [0.:20.] [-.01:0.1]\\\n"
" %s,\\\n"
" %s\n\n"
" reset\n\n",a_xeq, b_xeq);
stop();
clrscrn();
printf(" a_n : n-> %s\n\n", a_neq);
printf(" b_n : n-> %s\n\n", b_neq);
printf(" c_n : n-> a_n/b_n\n\n");
for(i=1; i<7; i++)
printf(" c_%.0f = %5.3f || c_%.0f = %5.6f || c_%.0f = %5.8f\n",
i, a_n(i)/b_n(i),
i*10, a_n(i*10)/b_n(i*10),
i*100,a_n(i*100)/b_n(i*100) );
printf("\n\n");
stop();
clrscrn();
printf(" a_n : n-> %s \n\n", a_neq);
printf(" b_n : n-> %s\n\n\n", b_neq);
printf(" Since S.b_n is a convergence geometric series.\n\n");
printf(" It follows from the theorem that S.a_n is \n\n");
printf(" also converge. \n\n\n");
stop();
return 0;
}
/* ---------------------------------- */
/* ---------------------------------- */
Exemple de sortie écran :
Limit comparison test.
Let S.a_n and S.b_n be positive-term series.
If there is a positive real number c such that
lim n->oo (a_n/b_n) = c >0
The either both series converge or both series diverge.
Press return to continue.
Exemple de sortie écran :
# Copy and past this file into the screen of gnuplot
set zeroaxis lt 3 lw 1
set grid
plot [0.:20.] [-.01:0.1]\
(8.*x**2 - 7) / (exp(x)*(x+1)**2),\
1./exp(x)
reset
Press return to continue.
Exemple de sortie écran :
a_n : n-> (8.*n**2 - 7) / (exp(x)*(n+1)**2)
b_n : n-> 1./exp(n)
c_n : n-> a_n/b_n
c_1 = 0.250 || c_10 = 6.553719 || c_100 = 7.84168219
c_2 = 2.778 || c_20 = 7.240363 || c_200 = 7.92042276
c_3 = 4.062 || c_30 = 7.484912 || c_300 = 7.94685489
c_4 = 4.840 || c_40 = 7.610351 || c_400 = 7.96010597
c_5 = 5.361 || c_50 = 7.686659 || c_500 = 7.96806786
c_6 = 5.735 || c_60 = 7.737974 || c_600 = 7.97338047
Press return to continue.
Exemple de sortie écran :
a_n : n-> (8.*pow(n,2)-7) / (exp(n)*pow(n+1,2))
b_n : n-> 1./exp(n)
Since S.b_n is a convergence geometric series .
It follows from the theorem that S.a_n is
also converge.
Press return to continue.