Aller au contenu

Mathc initiation/a497

Un livre de Wikilivres.


Sommaire


Installer et compiler ces fichiers dans votre répertoire de travail.


c00a.c
/* ---------------------------------- */
/* save as c00a.c                     */
/* ---------------------------------- */
#include "x_afile.h"
#include      "fa.h"
/* ---------------------------------- */
int main(void)
{
double i;

 clrscrn();
 printf(" The Root Test.                                 \n\n");
 printf(" Let S.a_n be positive-term series.             \n\n");
 printf(" lim n->oo (a_n)**1/n < 1      The series converge\n");
 printf(" lim n->oo (a_n)**1/n > 1, +oo The series diverge \n");
 printf(" lim n->oo (a_n)**1/n = 1      Use another test \n\n");
 stop();

 clrscrn();
 printf("  a_n       : n-> %s        \n",  a_neq);
 printf(" (a_n)**1/n : n-> %s      \n\n", a_nneq);
 printf("  c_n       : n-> %s    \n\n\n",  c_neq);

 for(i=2; i<10; i++)
     printf(" c_%.0f = %5.3f || c_%.0f = %5.6f ||\n",
     i,     a_nn(i),
     i*10,  a_nn(i*10) );
  
 printf(" \n\n\n"   
        " lim n->oo (a_n)**1/n > 1, +oo The series diverge\n\n\n");
 stop();

 return 0;
}
/* ---------------------------------- */
/* ---------------------------------- */


Exemple de sortie écran :

 The Root Test.                                 

 Let S.a_n be positive-term series.             

 lim n->oo (a_n)**1/n < 1      The series converge
 lim n->oo (a_n)**1/n > 1, +oo The series diverge 
 lim n->oo (a_n)**1/n = 1      Use another test 

 Press return to continue.


Exemple de sortie écran :

  a_n       : n->  ((4*n-6)/(n+2))**n        
 (a_n)**1/n : n-> (((4*n-6)/(n+2))**n)**1/n      

  c_n       : n->  (4*n-6)/(n+2)    


 c_2 = 0.500 || c_20 = 3.363636 ||
 c_3 = 1.200 || c_30 = 3.562500 ||
 c_4 = 1.667 || c_40 = 3.666667 ||
 c_5 = 2.000 || c_50 = 3.730769 ||
 c_6 = 2.250 || c_60 = 3.774194 ||
 c_7 = 2.444 || c_70 = 3.805556 ||
 c_8 = 2.600 || c_80 = 3.829268 ||
 c_9 = 2.727 || c_90 = 3.847826 ||
 


 lim n->oo (a_n)**1/n > 1, +oo The series diverge


 Press return to continue.