Sommaire
Installer ce fichier dans votre répertoire de travail.
fb.h
/* --------------------------------- */ /* save as fb.h */ /* --------------------------------- */ #define LOOP 2*300 /* --------------------------------- */ double s = 1./2.; /* --------------------------------- */ double F( double t) { return( (t) ); } char Feq[] = "t"; /* --------------------------------- */ double dF( double t) { return( (1.) ); } char dFeq[] = "1"; /* --------------------------------- */ /* --------------------------------- Laplace transform of F(t) --------------------------------- */ double f( double s) { return((1./(s*s))); } char feq[] = "(1/s^2)"; /* --------------------------------- */ double f_s( double s) { return( (s*(1./(s*s))-F(0))); } char f_seq[] = "(s)*(1/s^2)-0"; char f2seq[] = "1/(s)"; /* ---------------------------------- */ /* ---------------------------------- */ double b = 100.; char beq[] = "100"; double a = 0.; char aeq[] = "0"; /* ---------------------------------- */ /* ---------------------------------- */ char Mathematica_eq[] = "integrate e**(-s*t)*(1) dt" " from t=0 to infinity"; /* ---------------------------------- */ /* ---------------------------------- */
fc.h
/* --------------------------------- */ /* save as fc.h */ /* --------------------------------- */ #define LOOP 2*300 /* --------------------------------- */ double s = 1./2.; /* --------------------------------- */ double F( double t) { return( (t*t) ); } char Feq[] = "t**2"; /* --------------------------------- */ double dF( double t) { return( (2*t) ); } char dFeq[] = "2*t"; /* --------------------------------- */ /* --------------------------------- Laplace transform of F(t) --------------------------------- */ double f( double s) { return((2./(s*s*s))); } char feq[] = "(2/s^3)"; /* ---------------------------------- */ double f_s( double s) { return((s*(2./(s*s*s))-F(0))); } char f_seq[] = "s * (2/(s^3)) - 0"; char f2seq[] = "2/(s^2)"; /* ---------------------------------- */ /* ---------------------------------- */ double b = 100.; char beq[] = "100"; double a = 0.; char aeq[] = "0"; /* ---------------------------------- */ /* ---------------------------------- */ char Mathematica_eq[] = "integrate e**(-s*t)*(2*t) dt" " from t=0 to infinity"; /* ---------------------------------- */ /* ---------------------------------- */
fd.h
/* --------------------------------- */ /* save as fd.h */ /* --------------------------------- */ #define LOOP 2*300 /* --------------------------------- */ double s = 1./2.; /* --------------------------------- */ double F( double t) { return( (t*t*t) ); } char Feq[] = "t**3"; /* --------------------------------- */ double dF( double t) { return( (3*t*t) ); } char dFeq[] = "3*t**2"; /* --------------------------------- */ /* --------------------------------- Laplace transform of F(t) --------------------------------- */ double f( double s) { return((6./(s*s*s*s))); } char feq[] = "(6/s^4)"; /* ---------------------------------- */ double f_s( double s) { return((s*(6./(s*s*s*s))-F(0))); } char f_seq[] = "s * (6/s^4) - 0"; char f2seq[] = "6/s^3"; /* ---------------------------------- */ /* ---------------------------------- */ double b = 100.; char beq[] = "100"; double a = 0.; char aeq[] = "0"; /* ---------------------------------- */ /* ---------------------------------- */ char Mathematica_eq[] = "integrate e**(-s*t)*(3*t**2) dt" " from t=0 to infinity"; /* ---------------------------------- */ /* ---------------------------------- */
fe.h
/* --------------------------------- */ /* save as fe.h */ /* --------------------------------- */ #define LOOP 2*300 /* --------------------------------- */ double s = 1./2.; /* --------------------------------- */ double F( double t) { return( (t*t*t*t) ); } char Feq[] = "t**4"; /* --------------------------------- */ double dF( double t) { return( (4*t*t*t) ); } char dFeq[] = "4*t**3"; /* --------------------------------- */ /* --------------------------------- Laplace transform of F(t) --------------------------------- */ double f( double s) { return((24./(s*s*s*s*s))); } char feq[] = "(24/s^5)"; /* ---------------------------------- */ double f_s( double s) { return((s*(24./(s*s*s*s*s))-F(0))); } char f_seq[] = "s * (24/s^5) - 0"; char f2seq[] = "24/s^4"; /* ---------------------------------- */ /* ---------------------------------- */ double b = 100.; char beq[] = "100"; double a = 0.; char aeq[] = "0"; /* ---------------------------------- */ /* ---------------------------------- */ char Mathematica_eq[] = "integrate e**(-s*t)*(4*t**3) dt" " from t=0 to infinity"; /* ---------------------------------- */ /* ---------------------------------- */
ff.h
/* --------------------------------- */ /* save as ff.h */ /* --------------------------------- */ #define LOOP 2*300 /* --------------------------------- */ double s = 1./4.; /* --------------------------------- */ double F( double t) { return( (sin(t)) ); } char Feq[] = "sin(t)"; /* --------------------------------- */ double dF( double t) { return( (cos(t)) ); } char dFeq[] = "cos(t)"; /* --------------------------------- */ /* --------------------------------- Laplace transform of F(t) --------------------------------- */ double f( double s) { return((1./(s*s+1.))); } char feq[] = "(1/(s^2+1))"; /* ---------------------------------- */ double f_s( double s) { return( (s*(1./(s*s+1.))-F(0)) ); } char f_seq[] = "s * (1./(s^2+1) - sin(0)"; char f2seq[] = "s /(s^2+1)"; /* ---------------------------------- */ /* ---------------------------------- */ double b = 100.; char beq[] = "100"; double a = 0.; char aeq[] = "0"; /* ---------------------------------- */ /* ---------------------------------- */ char Mathematica_eq[] = "integrate e**(-s*t)*(cos(t)) dt" " from t=0 to infinity"; /* ---------------------------------- */ /* ---------------------------------- */
fg.h
/* --------------------------------- */ /* save as fg.h */ /* --------------------------------- */ #define LOOP 2*300 /* --------------------------------- */ double s = 1./5.; /* --------------------------------- */ double F( double t) { return( (cos(t)) ); } char Feq[] = "cos(t)"; /* --------------------------------- */ double dF( double t) { return( (-sin(t)) ); } char dFeq[] = "-sin(t)"; /* --------------------------------- */ /* --------------------------------- Laplace transform of F(t) --------------------------------- */ double f( double s) { return((s/(s*s+1.))); } char feq[] = "(s/(s^2+1))"; /* ---------------------------------- */ double f_s( double s) { return( (s*(s/(s*s+1.))-F(0)) ); } char f_seq[] = "s * (s/(s^2+1) - cos(0))"; char f2seq[] = "s**2/(s^2+1) - 1"; /* ---------------------------------- */ /* ---------------------------------- */ double b = 100.; char beq[] = "100"; double a = 0.; char aeq[] = "0"; /* ---------------------------------- */ /* ---------------------------------- */ char Mathematica_eq[] = "integrate e**(-s*t)*(-sin(t)) dt" " from t=0 to infinity"; /* ---------------------------------- */ /* ---------------------------------- */
fh.h
/* --------------------------------- */ /* save as fh.h */ /* --------------------------------- */ #define LOOP 2*300 /* --------------------------------- */ double s = 2.; /* --------------------------------- */ double F( double t) { return( (sinh(t)) ); } char Feq[] = "sinh(t)"; /* --------------------------------- */ double dF( double t) { return( (cosh(t)) ); } char dFeq[] = "cosh(t)"; /* --------------------------------- */ /* --------------------------------- Laplace transform of F(t) --------------------------------- */ double f( double s) { return((1/(s*s-1.))); } char feq[] = "(1/(s^2-1))"; /* ---------------------------------- */ double f_s( double s) { return( (s*(1/(s*s-1.))-F(0)) ); } char f_seq[] = "s * (1/(s^2-1)) - sinh(0)"; char f2seq[] = "s/(s^2-1)"; /* ---------------------------------- */ /* ---------------------------------- */ double b = 100.; char beq[] = "100"; double a = 0.; char aeq[] = "0"; /* ---------------------------------- */ /* ---------------------------------- */ char Mathematica_eq[] = "integrate e**(-s*t)*(cosh(t)) dt" " from t=0 to infinity"; /* ---------------------------------- */ /* ---------------------------------- */
fi.h
/* --------------------------------- */ /* save as fi.h */ /* --------------------------------- */ #define LOOP 2*300 /* --------------------------------- */ double s = 2.; /* --------------------------------- */ double F( double t) { return( (cosh(t)) ); } char Feq[] = "cosh(t)"; /* --------------------------------- */ double dF( double t) { return( (sinh(t)) ); } char dFeq[] = "sinh(t)"; /* --------------------------------- */ /* --------------------------------- Laplace transform of F(t) --------------------------------- */ double f( double s) { return((s/(s*s-1.))); } char feq[] = "(s/(s^2-1))"; /* ---------------------------------- */ double f_s( double s) { return( (s*(s/(s*s-1.))-F(0)) ); } char f_seq[] = "s * s/(s^2-1) - cosh(0)"; char f2seq[] = "s**2/(s^2-1) - 1"; /* ---------------------------------- */ /* ---------------------------------- */ double b = 100.; char beq[] = "100"; double a = 0.; char aeq[] = "0"; /* ---------------------------------- */ /* ---------------------------------- */ char Mathematica_eq[] = "integrate e**(-s*t)*(sinh(t)) dt" " from t=0 to infinity"; /* ---------------------------------- */ /* ---------------------------------- */
fj.h
/* --------------------------------- */ /* save as fj.h */ /* --------------------------------- */ #define LOOP 2*300 /* --------------------------------- */ double s = 2.; /* --------------------------------- */ double F( double t) { return( (exp(t)) ); } char Feq[] = "exp(t)"; /* --------------------------------- */ double dF( double t) { return( (exp(t)) ); } char dFeq[] = "exp(t)"; /* --------------------------------- */ /* --------------------------------- Laplace transform of F(t) --------------------------------- */ double f( double s) { return((1/(s-1.))); } char feq[] = "(1/(s-1))"; /* ---------------------------------- */ double f_s( double s) { return( ((s)*(1/(s-1.))-F(0)) ); } char f_seq[] = "s * (1/(s-1)) - exp(0))"; char f2seq[] = "s/(s-1) - 1)"; /* ---------------------------------- */ /* ---------------------------------- */ double b = 100.; char beq[] = "100"; double a = 0.; char aeq[] = "0"; /* ---------------------------------- */ /* ---------------------------------- */ char Mathematica_eq[] = "integrate e**(-s*t)*(exp(t)) dt" " from t=0 to infinity"; /* ---------------------------------- */ /* ---------------------------------- */