Mathc initiation/a526
Apparence
Installer et compiler ces fichiers dans votre répertoire de travail.
c00a.c |
---|
/* --------------------------------- */
/* save as c00a.c */
/* --------------------------------- */
#include "x_afile.h"
#include "fb.h" /* Try fb.h, fc.h ... fj.h */
/* --------------------------------- */
int main(void)
{
clrscrn();
printf(" The Laplace transform of F(t) is f(s) \n\n"
" / oo \n"
" | \n"
" L{F(t)} = | exp(-s t) F(t) dt = f(s) \n"
" | \n"
" / 0 \n\n\n");
printf(" A property of the Laplace transform is : \n\n"
" L{F'(t)} = s * f(s) - F(0) \n\n");
stop();
clrscrn();
printf(" If F(t) : t-> %s then f(s) = %s\n\n", Feq, feq);
printf(" Then :\n\n"
" L{F'(t)} = s * f(s) - F(0) \n"
" = %s \n"
" = %s \n\n", f_seq,f2seq);
printf(" With s = (%+.3f)\n\n", s);
printf(" Then s * f(s) - F(0) = %s = (%+.3f)\n\n", f2seq, f_s(s));
stop();
return 0;
}
/* --------------------------------- */
/* --------------------------------- */
Exemple de sortie écran :
The Laplace transform of F(t) is f(s)
/ oo
|
L{F(t)} = | exp(-s t) F(t) dt = f(s)
|
/ 0
A property of the Laplace transform is :
L{F'(t)} = s * f(s) - F(0)
Press return to continue.
Exemple de sortie écran :
If F(t) : t-> t then f(s) = (1/s^2)
Then :
L{F'(t)} = s * f(s) - F(0)
= (s)*(1/s^2)-0
= 1/(s)
With s = (+0.500)
Then s * f(s) - F(0) = 1/(s) = (+2.000)
Press return to continue.