Sommaire
Installer ce fichier dans votre répertoire de travail.
fc.h
/* --------------------------------- */ /* save as fc.h */ /* --------------------------------- */ #define LOOP 2*300 /* --------------------------------- */ double s = 1./2.; /* --------------------------------- */ double F( double t) { return( (t*t) ); } char Feq[] = "t**2"; /* --------------------------------- */ double dF( double t) { return( (2.*t) ); } char dFeq[] = "2*t"; /* --------------------------------- */ double d2F( double t) { return( (2) ); } char d2Feq[] = "2"; /* --------------------------------- */ /* --------------------------------- Laplace transform of F(t) --------------------------------- */ double f( double s) { return((2./(s*s*s))); } char feq[] = "(2/s^3)"; /* ---------------------------------- */ double f_s( double s) { return((s*s*(2./(s*s*s))-s*F(0)-dF(0))); } char f_seq[] = "s^2 * (2/(s^3)) - 0 - 0"; char f2seq[] = "2/(s)"; /* ---------------------------------- */ /* ---------------------------------- */ double b = 100.; char beq[] = "100"; double a = 0.; char aeq[] = "0"; /* ---------------------------------- */ /* ---------------------------------- */ char Mathematica_eq[] = "integrate e**(-s*t)*(2) dt" " from t=0 to infinity"; /* ---------------------------------- */ /* ---------------------------------- */
fd.h
/* --------------------------------- */ /* save as fd.h */ /* --------------------------------- */ #define LOOP 2*300 /* --------------------------------- */ double s = 1./2.; /* --------------------------------- */ double F( double t) { return( (t*t*t) ); } char Feq[] = "t**3"; /* --------------------------------- */ double dF( double t) { return( (3*t*t) ); } char dFeq[] = "3*t**2"; /* --------------------------------- */ double d2F( double t) { return( (6*t) ); } char d2Feq[] = "6*t"; /* --------------------------------- */ /* --------------------------------- Laplace transform of F(t) --------------------------------- */ double f( double s) { return((6./(s*s*s*s))); } char feq[] = "(6/s^4)"; /* ---------------------------------- */ double f_s( double s) { return((s*s*(6./(s*s*s*s))-s*F(0)-dF(0))); } char f_seq[] = "s^2 * (6/s^4) - 0 - 0"; char f2seq[] = "6/s^2"; /* ---------------------------------- */ /* ---------------------------------- */ double b = 100.; char beq[] = "100"; double a = 0.; char aeq[] = "0"; /* ---------------------------------- */ /* ---------------------------------- */ char Mathematica_eq[] = "integrate e**(-s*t)*(6*t) dt" " from t=0 to infinity"; /* ---------------------------------- */ /* ---------------------------------- */
fe.h
/* --------------------------------- */ /* save as fe.h */ /* --------------------------------- */ #define LOOP 2*300 /* --------------------------------- */ double s = 1./2.; /* --------------------------------- */ double F( double t) { return( (t*t*t*t) ); } char Feq[] = "t**4"; /* --------------------------------- */ double dF( double t) { return( (4*t*t*t) ); } char dFeq[] = "4*t**3"; /* --------------------------------- */ double d2F( double t) { return( (12*t*t) ); } char d2Feq[] = "12*t**2"; /* --------------------------------- */ /* --------------------------------- Laplace transform of F(t) --------------------------------- */ double f( double s) { return((24./(s*s*s*s*s))); } char feq[] = "(24/s^5)"; /* ---------------------------------- */ double f_s( double s) { return((s*s*(24./(s*s*s*s*s))-s*F(0)-dF(0))); } char f_seq[] = "s^2 * (24/s^5) - 0 - 0"; char f2seq[] = "24/s^3"; /* ---------------------------------- */ /* ---------------------------------- */ double b = 100.; char beq[] = "100"; double a = 0.; char aeq[] = "0"; /* ---------------------------------- */ /* ---------------------------------- */ char Mathematica_eq[] = "integrate e**(-s*t)*(12*t**2) dt" " from t=0 to infinity"; /* ---------------------------------- */ /* ---------------------------------- */
ff.h
/* --------------------------------- */ /* save as ff.h */ /* --------------------------------- */ #define LOOP 2*300 /* --------------------------------- */ double s = 1./4.; /* --------------------------------- */ double F( double t) { return( (sin(t)) ); } char Feq[] = "sin(t)"; /* --------------------------------- */ double dF( double t) { return( (cos(t)) ); } char dFeq[] = "cos(t)"; /* --------------------------------- */ double d2F( double t) { return( (-sin(t)) ); } char d2Feq[] = "-sin(t)"; /* --------------------------------- */ /* --------------------------------- Laplace transform of F(t) --------------------------------- */ double f( double s) { return((1./(s*s+1.))); } char feq[] = "(1/(s^2+1))"; /* ---------------------------------- */ double f_s( double s) { return( (s*s*(1./(s*s+1.))-s*F(0)-dF(0)) ); } char f_seq[] = "s^2 * 1/(s^2+1) - s*sin(0) - cos(0)"; char f2seq[] = "s^2/(s^2+1) - 1"; /* ---------------------------------- */ /* ---------------------------------- */ double b = 100.; char beq[] = "100"; double a = 0.; char aeq[] = "0"; /* ---------------------------------- */ /* ---------------------------------- */ char Mathematica_eq[] = "integrate e**(-s*t)*(-sin(t)) dt" " from t=0 to infinity"; /* ---------------------------------- */ /* ---------------------------------- */
fg.h
/* --------------------------------- */ /* save as fg.h */ /* --------------------------------- */ #define LOOP 2*300 /* --------------------------------- */ double s = 1./5.; /* --------------------------------- */ double F( double t) { return( (cos(t)) ); } char Feq[] = "cos(t)"; /* --------------------------------- */ double dF( double t) { return( (-sin(t)) ); } char dFeq[] = "-sin(t)"; /* --------------------------------- */ double d2F( double t) { return( (-cos(t)) ); } char d2Feq[] = "-cos(t)"; /* --------------------------------- */ /* --------------------------------- Laplace transform of F(t) --------------------------------- */ double f( double s) { return((s/(s*s+1.))); } char feq[] = "(s/(s^2+1))"; /* ---------------------------------- */ double f_s( double s) { return( (s*s*(s/(s*s+1.))-s*F(0)-dF(0)) ); } char f_seq[] = "s**2 * s/(s^2+1) - s*(cos(0) - (-sin(0))"; char f2seq[] = "s**3/(s^2+1) - s"; /* ---------------------------------- */ /* ---------------------------------- */ double b = 100.; char beq[] = "100"; double a = 0.; char aeq[] = "0"; /* ---------------------------------- */ /* ---------------------------------- */ char Mathematica_eq[] = "integrate e**(-s*t)*(-cos(t)) dt" " from t=0 to infinity"; /* ---------------------------------- */ /* ---------------------------------- */
fh.h
/* --------------------------------- */ /* save as fh.h */ /* --------------------------------- */ #define LOOP 2*300 /* --------------------------------- */ double s = 2.; /* --------------------------------- */ double F( double t) { return( (sinh(t)) ); } char Feq[] = "sinh(t)"; /* --------------------------------- */ double dF( double t) { return( (cosh(t)) ); } char dFeq[] = "cosh(t)"; /* --------------------------------- */ double d2F( double t) { return( (sinh(t)) ); } char d2Feq[] = "sinh(t)"; /* --------------------------------- */ /* --------------------------------- Laplace transform of F(t) --------------------------------- */ double f( double s) { return((1/(s*s-1.))); } char feq[] = "(1/(s^2-1))"; /* ---------------------------------- */ double f_s( double s) { return( (s*s*(1/(s*s-1.))-s*F(0)-dF(0)) ); } char f_seq[] = "s^2 * (1/(s^2-1)) - s*sinh(0) - cosh(0)"; char f2seq[] = "s^2/(s^2-1) - 1"; /* ---------------------------------- */ /* ---------------------------------- */ double b = 100.; char beq[] = "100"; double a = 0.; char aeq[] = "0"; /* ---------------------------------- */ /* ---------------------------------- */ char Mathematica_eq[] = "integrate e**(-s*t)*(sinh(t)) dt" " from t=0 to infinity"; /* ---------------------------------- */ /* ---------------------------------- */
fi.h
/* --------------------------------- */ /* save as fi.h */ /* --------------------------------- */ #define LOOP 2*300 /* --------------------------------- */ double s = 2.; /* --------------------------------- */ double F( double t) { return( (cosh(t)) ); } char Feq[] = "cosh(t)"; /* --------------------------------- */ double dF( double t) { return( (sinh(t)) ); } char dFeq[] = "sinh(t)"; /* --------------------------------- */ double d2F( double t) { return( (cosh(t)) ); } char d2Feq[] = "cosh(t)"; /* --------------------------------- */ /* --------------------------------- Laplace transform of F(t) --------------------------------- */ double f( double s) { return((s/(s*s-1.))); } char feq[] = "(s/(s^2-1))"; /* ---------------------------------- */ double f_s( double s) { return( (s*s*(s/(s*s-1.))-s*F(0)-dF(0)) ); } char f_seq[] = "s^2 * s/(s^2-1) - s*cosh(0) - sinh(0)"; char f2seq[] = "s^3/(s^2-1) - s"; /* ---------------------------------- */ /* ---------------------------------- */ double b = 100.; char beq[] = "100"; double a = 0.; char aeq[] = "0"; /* ---------------------------------- */ /* ---------------------------------- */ char Mathematica_eq[] = "integrate e**(-s*t)*(cosh(t)) dt" " from t=0 to infinity"; /* ---------------------------------- */ /* ---------------------------------- */
fj.h
/* --------------------------------- */ /* save as fj.h */ /* --------------------------------- */ #define LOOP 2*300 /* --------------------------------- */ double s = 2.; /* --------------------------------- */ double F( double t) { return( (exp(t)) ); } char Feq[] = "exp(t)"; /* --------------------------------- */ double dF( double t) { return( (exp(t)) ); } char dFeq[] = "exp(t)"; /* --------------------------------- */ double d2F( double t) { return( (exp(t)) ); } char d2Feq[] = "exp(t)"; /* --------------------------------- */ /* --------------------------------- Laplace transform of F(t) --------------------------------- */ double f( double s) { return((1/(s-1.))); } char feq[] = "(1/(s-1))"; /* ---------------------------------- */ double f_s( double s) { return( (s*s*(1/(s-1.))-s*F(0)-dF(0)) ); } char f_seq[] = "s^2 * (1/(s-1)) - s*exp(0)- exp(0))"; char f2seq[] = "s^2/(s-1) - s - 1"; /* ---------------------------------- */ /* ---------------------------------- */ double b = 100.; char beq[] = "100"; double a = 0.; char aeq[] = "0"; /* ---------------------------------- */ /* ---------------------------------- */ char Mathematica_eq[] = "integrate e**(-s*t)*(exp(t)) dt" " from t=0 to infinity"; /* ---------------------------------- */ /* ---------------------------------- */