Aller au contenu

Mathc initiation/a529

Un livre de Wikilivres.


Sommaire


Installer ce fichier dans votre répertoire de travail.

Texte de la légende
fc.h
/* --------------------------------- */
/* save as fc.h                      */
/* --------------------------------- */
#define  LOOP  2*300
/* --------------------------------- */
double  s =  1./2.;
/* --------------------------------- */
double F(
double t)
{
        return( (t*t) );
}
char  Feq[] =  "t**2";
/* --------------------------------- */
double dF(
double t)
{
        return( (2.*t) );
}
char  dFeq[] =  "2*t";
/* --------------------------------- */
double d2F(
double t)
{
        return(  (2) );
}
char  d2Feq[] =  "2";
/* --------------------------------- */
/* ---------------------------------
   Laplace transform of F(t)
   --------------------------------- */
double f(
double s)
{
         return((2./(s*s*s)));
}
char  feq[] =  "(2/s^3)";
/* ---------------------------------- */
double f_s(
double s)
{
         return((s*s*(2./(s*s*s))-s*F(0)-dF(0)));
}
char  f_seq[] =  "s^2 * (2/(s^3)) - 0 - 0";
char  f2seq[] =  "2/(s)";
/* ---------------------------------- */
/* ---------------------------------- */
double b = 100.;    char beq[] = "100";
double a =   0.;    char aeq[] =   "0";
/* ---------------------------------- */
/* ---------------------------------- */
char Mathematica_eq[] =  
     "integrate e**(-s*t)*(2) dt"
     " from t=0 to infinity";  
/* ---------------------------------- */
/* ---------------------------------- */
fd.h
/* --------------------------------- */
/* save as fd.h                      */
/* --------------------------------- */
#define  LOOP  2*300
/* --------------------------------- */
double  s =  1./2.;
/* --------------------------------- */
double F(
double t)
{
        return( (t*t*t) );
}
char  Feq[] =  "t**3";
/* --------------------------------- */
double dF(
double t)
{
        return( (3*t*t) );
}
char  dFeq[] =  "3*t**2";
/* --------------------------------- */
double d2F(
double t)
{
        return(  (6*t) );
}
char  d2Feq[] =  "6*t";
/* --------------------------------- */
/* ---------------------------------
   Laplace transform of F(t)
   --------------------------------- */
double f(
double s)
{
         return((6./(s*s*s*s)));
}
char  feq[] =  "(6/s^4)";
/* ---------------------------------- */
double f_s(
double s)
{
         return((s*s*(6./(s*s*s*s))-s*F(0)-dF(0)));
}
char  f_seq[] =  "s^2 * (6/s^4) - 0 - 0";
char  f2seq[] =  "6/s^2";
/* ---------------------------------- */
/* ---------------------------------- */
double b = 100.;    char beq[] = "100";
double a =   0.;    char aeq[] =   "0";
/* ---------------------------------- */
/* ---------------------------------- */
char Mathematica_eq[] =  
     "integrate e**(-s*t)*(6*t) dt"
     " from t=0 to infinity";  
/* ---------------------------------- */
/* ---------------------------------- */
fe.h
/* --------------------------------- */
/* save as fe.h                      */
/* --------------------------------- */
#define  LOOP  2*300
/* --------------------------------- */
double  s =  1./2.;
/* --------------------------------- */
double F(
double t)
{
        return( (t*t*t*t) );
}
char  Feq[] =  "t**4";
/* --------------------------------- */
double dF(
double t)
{
        return(  (4*t*t*t) );
}
char  dFeq[] =  "4*t**3";
/* --------------------------------- */
double d2F(
double t)
{
        return(  (12*t*t) );
}
char  d2Feq[] =  "12*t**2";
/* --------------------------------- */
/* ---------------------------------
   Laplace transform of F(t)
   --------------------------------- */
double f(
double s)
{
         return((24./(s*s*s*s*s)));
}
char  feq[] =  "(24/s^5)";
/* ---------------------------------- */
double f_s(
double s)
{
         return((s*s*(24./(s*s*s*s*s))-s*F(0)-dF(0)));
}
char  f_seq[] =  "s^2 * (24/s^5) - 0 - 0";
char  f2seq[] =  "24/s^3";
/* ---------------------------------- */
/* ---------------------------------- */
double b = 100.;    char beq[] = "100";
double a =   0.;    char aeq[] =   "0";
/* ---------------------------------- */
/* ---------------------------------- */
char Mathematica_eq[] =  
     "integrate e**(-s*t)*(12*t**2) dt"
     " from t=0 to infinity";  
/* ---------------------------------- */
/* ---------------------------------- */
ff.h
/* --------------------------------- */
/* save as ff.h                      */
/* --------------------------------- */
#define  LOOP  2*300
/* --------------------------------- */
double  s =  1./4.;
/* --------------------------------- */
double F(
double t)
{
        return( (sin(t)) );
}
char  Feq[] =   "sin(t)";
/* --------------------------------- */
double dF(
double t)
{
        return( (cos(t)) );
}
char  dFeq[] =  "cos(t)";
/* --------------------------------- */
double d2F(
double t)
{
        return(  (-sin(t)) );
}
char  d2Feq[] =  "-sin(t)";
/* --------------------------------- */
/* ---------------------------------
   Laplace transform of F(t)
   --------------------------------- */
double f(
double s)
{
         return((1./(s*s+1.)));
}
char  feq[] =  "(1/(s^2+1))";
/* ---------------------------------- */
double f_s(
double s)
{
      return(  (s*s*(1./(s*s+1.))-s*F(0)-dF(0))  );
}
char  f_seq[] =  "s^2 * 1/(s^2+1) - s*sin(0) - cos(0)";
char  f2seq[] =  "s^2/(s^2+1) - 1";
/* ---------------------------------- */
/* ---------------------------------- */
double b = 100.;    char beq[] = "100";
double a =   0.;    char aeq[] =   "0";
/* ---------------------------------- */
/* ---------------------------------- */
char Mathematica_eq[] =  
     "integrate e**(-s*t)*(-sin(t)) dt"
     " from t=0 to infinity";  
/* ---------------------------------- */
/* ---------------------------------- */
fg.h
/* --------------------------------- */
/* save as fg.h                      */
/* --------------------------------- */
#define  LOOP  2*300
/* --------------------------------- */
double  s =  1./5.;
/* --------------------------------- */
double F(
double t)
{
        return( (cos(t)) );
}
char  Feq[] =   "cos(t)";
/* --------------------------------- */
double dF(
double t)
{
        return( (-sin(t)) );
}
char  dFeq[] =  "-sin(t)";
/* --------------------------------- */
double d2F(
double t)
{
        return(  (-cos(t)) );
}
char  d2Feq[] =  "-cos(t)";
/* --------------------------------- */
/* ---------------------------------
   Laplace transform of F(t)
   --------------------------------- */
double f(
double s)
{
         return((s/(s*s+1.)));
}
char  feq[] =  "(s/(s^2+1))";
/* ---------------------------------- */
double f_s(
double s)
{
      return(    (s*s*(s/(s*s+1.))-s*F(0)-dF(0))  );
}
char  f_seq[] =  "s**2 * s/(s^2+1) - s*(cos(0) - (-sin(0))";
char  f2seq[] =  "s**3/(s^2+1) - s";
/* ---------------------------------- */
/* ---------------------------------- */
double b = 100.;    char beq[] = "100";
double a =   0.;    char aeq[] =   "0";
/* ---------------------------------- */
/* ---------------------------------- */
char Mathematica_eq[] =  
     "integrate e**(-s*t)*(-cos(t)) dt"
     " from t=0 to infinity";  
/* ---------------------------------- */
/* ---------------------------------- */
fh.h
/* --------------------------------- */
/* save as fh.h                      */
/* --------------------------------- */
#define  LOOP  2*300
/* --------------------------------- */
double  s =  2.;
/* --------------------------------- */
double F(
double t)
{
        return( (sinh(t)) );
}
char  Feq[] =   "sinh(t)";
/* --------------------------------- */
double dF(
double t)
{
        return(  (cosh(t)) );
}
char  dFeq[] =   "cosh(t)";
/* --------------------------------- */
double d2F(
double t)
{
        return(  (sinh(t)) );
}
char  d2Feq[] =  "sinh(t)";
/* --------------------------------- */
/* ---------------------------------
   Laplace transform of F(t)
   --------------------------------- */
double f(
double s)
{
         return((1/(s*s-1.)));
}
char  feq[] =  "(1/(s^2-1))";
/* ---------------------------------- */
double f_s(
double s)
{
      return(  (s*s*(1/(s*s-1.))-s*F(0)-dF(0))  );
}
char  f_seq[] =  "s^2 * (1/(s^2-1)) - s*sinh(0) - cosh(0)";
char  f2seq[] =  "s^2/(s^2-1) - 1";
/* ---------------------------------- */
/* ---------------------------------- */
double b = 100.;    char beq[] = "100";
double a =   0.;    char aeq[] =   "0";
/* ---------------------------------- */
/* ---------------------------------- */
char Mathematica_eq[] =  
     "integrate e**(-s*t)*(sinh(t)) dt"
     " from t=0 to infinity";  
/* ---------------------------------- */
/* ---------------------------------- */
fi.h
 
/* --------------------------------- */
/* save as fi.h                      */
/* --------------------------------- */
#define  LOOP  2*300
/* --------------------------------- */
double  s =  2.;
/* --------------------------------- */
double F(
double t)
{
       return( (cosh(t)) );
}
char  Feq[] =  "cosh(t)";
/* --------------------------------- */
double dF(
double t)
{
        return( (sinh(t)) );
}
char  dFeq[] =  "sinh(t)";
/* --------------------------------- */
double d2F(
double t)
{
        return( (cosh(t)) );
}
char  d2Feq[] = "cosh(t)";
/* --------------------------------- */
/* ---------------------------------
   Laplace transform of F(t)
   --------------------------------- */
double f(
double s)
{
         return((s/(s*s-1.)));
}
char  feq[] =  "(s/(s^2-1))";
/* ---------------------------------- */
double f_s(
double s)
{
      return(  (s*s*(s/(s*s-1.))-s*F(0)-dF(0))  );
}
char  f_seq[] =  "s^2 * s/(s^2-1) - s*cosh(0) - sinh(0)";
char  f2seq[] =  "s^3/(s^2-1) - s";
/* ---------------------------------- */
/* ---------------------------------- */
double b = 100.;    char beq[] = "100";
double a =   0.;    char aeq[] =   "0";
/* ---------------------------------- */
/* ---------------------------------- */
char Mathematica_eq[] =  
     "integrate e**(-s*t)*(cosh(t)) dt"
     " from t=0 to infinity";  
/* ---------------------------------- */
/* ---------------------------------- */
fj.h
/* --------------------------------- */
/* save as fj.h                      */
/* --------------------------------- */
#define  LOOP  2*300
/* --------------------------------- */
double  s =  2.;
/* --------------------------------- */
double F(
double t)
{
        return( (exp(t)) );
}
char  Feq[] =   "exp(t)";
/* --------------------------------- */
double dF(
double t)
{
        return( (exp(t)) );
}
char  dFeq[] =  "exp(t)";
/* --------------------------------- */
double d2F(
double t)
{
        return( (exp(t)) );
}
char  d2Feq[] = "exp(t)";
/* --------------------------------- */
/* ---------------------------------
   Laplace transform of F(t)
   --------------------------------- */
double f(
double s)
{
         return((1/(s-1.)));
}
char  feq[] =  "(1/(s-1))";
/* ---------------------------------- */
double f_s(
double s)
{
      return(  (s*s*(1/(s-1.))-s*F(0)-dF(0))  );
}
char  f_seq[] =  "s^2 * (1/(s-1)) - s*exp(0)- exp(0))";
char  f2seq[] =  "s^2/(s-1) - s - 1";
/* ---------------------------------- */
/* ---------------------------------- */
double b = 100.;    char beq[] = "100";
double a =   0.;    char aeq[] =   "0";
/* ---------------------------------- */
/* ---------------------------------- */
char Mathematica_eq[] =  
     "integrate e**(-s*t)*(exp(t)) dt"
     " from t=0 to infinity";  
/* ---------------------------------- */
/* ---------------------------------- */