Aller au contenu

Mathc initiation/a530

Un livre de Wikilivres.


Sommaire


Installer et compiler ces fichiers dans votre répertoire de travail.

c00a.c
/* --------------------------------- */
/* save as c00a.c                    */
/* --------------------------------- */
#include "x_afile.h"
#include      "fc.h"                 /* Try  fc.h ... fj.h */
/* --------------------------------- */
int main(void)
{
 clrscrn();  
 printf(" The Laplace transform of F(t) is f(s) \n\n" 
        "            / oo                         \n" 
        "           |                             \n" 
        " L{F(t)} = |    exp(-s t) F(t) dt = f(s) \n" 
        "           |                             \n" 
        "           /  0                      \n\n\n");
 
 
 printf(" A property of the Laplace transform is :    \n\n"
        "   L{F''(t)} = s**2 * f(s) - s * F(0) - F'(0)\n\n");
 stop();
 
 clrscrn(); 
 printf(" If  F(t) : t-> %s  then  f(s) = %s\n\n", Feq, feq);  
 
 printf(" Then :\n\n"
        "   L{F''(t)} = s**2 * f(s) - s * F(0) - F'(0) \n"
        "             = %s                             \n"
        "             = %s                           \n\n", f_seq,f2seq);

 printf(" With  s = (%+.3f)\n\n", s);
 
 printf(" Then  s**2 * f(s) - s * F(0) - F'(0) = %s = (%+.3f)\n\n", 
                  f2seq, f_s(s)); 
 
 stop();
 
 return 0;
}
/* --------------------------------- */
/* --------------------------------- */


Exemple de sortie écran :

 The Laplace transform of F(t) is f(s) 

            / oo                         
           |                             
 L{F(t)} = |    exp(-s t) F(t) dt = f(s) 
           |                             
           /  0                      


 A property of the Laplace transform is :    

   L{F''(t)} = s**2 * f(s) - s * F(0) - F'(0)

 Press return to continue.


Exemple de sortie écran :

 If  F(t) : t-> t**2  then  f(s) = (2/s^3)

 Then :

   L{F''(t)} = s**2 * f(s) - s * F(0) - F'(0) 
             = s^2 * (2/(s^3)) - 0 - 0                             
             = 2/(s)                           

 With  s = (+0.500)

 Then  s**2 * f(s) - s * F(0) - F'(0) = 2/(s) = (+4.000)

 Press return to continue.