Aller au contenu

Mathc initiation/a533

Un livre de Wikilivres.


Sommaire


Installer ce fichier dans votre répertoire de travail.

Texte de la légende
fb.h
/* --------------------------------- */
/* save as fb.h                      */
/* --------------------------------- */
#define  LOOP  2*300
/* --------------------------------- */
double  s  = 1./2.;
double  aa =    2.;
/* --------------------------------- */
double F(
double t)
{
        return( (t) );
}
char  Feq[] =  "t";
/* --------------------------------- */
double Fa(
double t)
{
        return( (aa*t) );
}
char  Faeq[] =  "a*t";
/* --------------------------------- */
/* ---------------------------------
   Laplace transform of F(t)
   --------------------------------- */
double f(
double s)
{
         return((1./(s*s)));
}
char  feq[] =  "(1/s^2)";
/* --------------------------------- */
double f_s(
double s)
{
 return(    (1./aa) * (1./(pow(s/aa,2))));
}
char  f_seq[] =  "1/a * (1/(s/a)^2)";
char  f2seq[] =  "a/s^2";
/* ---------------------------------- */
/* ---------------------------------- */
double b = 100.;    char beq[] = "100";
double a =   0.;    char aeq[] =   "0";
/* ---------------------------------- */
/* ---------------------------------- */
char Mathematica_eq[] =  
     "integrate e**(-s*t)*(a*t) dt"
     " from t=0 to infinity";  
/* ---------------------------------- */
/* ---------------------------------- */
fc.h
/* --------------------------------- */
/* save as fc.h                      */
/* --------------------------------- */
#define  LOOP  2*300
/* --------------------------------- */
double  s  = 1./2.;
double  aa =    2.;
/* --------------------------------- */
double F(
double t)
{
        return( pow(t,2) );
}
char  Feq[] =  "t**2";
/* --------------------------------- */
double Fa(
double t)
{
        return(  pow(aa*t,2) );
}
char  Faeq[] =  "(a*t)**2";
/* --------------------------------- */
/* ---------------------------------
   Laplace transform of F(t)
   --------------------------------- */
double f(
double s)
{
      return(  2./pow(s,3));
}
char  feq[] =  "(2/s^3)";
/* ---------------------------------- */
double f_s(
double s)
{
         return( (1./aa) * 2./pow(s/aa,3));
}
char  f_seq[] =  "(1/a) * (2/(s/a)^3)";
char  f2seq[] =  "2*a^2/(s^3)";
/* ---------------------------------- */
/* ---------------------------------- */
double b = 100.;    char beq[] = "100";
double a =   0.;    char aeq[] =   "0";
/* ---------------------------------- */
/* ---------------------------------- */
char Mathematica_eq[] =  
     "integrate e**(-s*t)*(a*t)**2 dt"
     " from t=0 to infinity";  
/* ---------------------------------- */
/* ---------------------------------- */
fd.h
/* --------------------------------- */
/* save as fd.h                      */
/* --------------------------------- */
#define  LOOP  2*300
/* --------------------------------- */
double  s  = 1./2.;
double  aa =    2.;
/* --------------------------------- */
double F(
double t)
{
        return( pow(t,3) );
}
char  Feq[] =  "t**3";
/* --------------------------------- */
double Fa(
double t)
{
        return(  pow(aa*t,3) );
}
char  Faeq[] =  "(a*t)**3";
/* --------------------------------- */
/* ---------------------------------
   Laplace transform of F(t)
   --------------------------------- */
double f(
double s)
{
        return( 6./pow(s,4));
}
char  feq[] =  "6/s^4";
/* ---------------------------------- */
double f_s(
double s)
{
         return( (1./aa) * 6./pow(s/aa,4));
}
char  f_seq[] =  "(1/a) * (6/(s/a)^4)";
char  f2seq[] =  "6*a^3/s^4";
/* ---------------------------------- */
/* ---------------------------------- */
double b = 100.;    char beq[] = "100";
double a =   0.;    char aeq[] =   "0";
/* ---------------------------------- */
/* ---------------------------------- */
char Mathematica_eq[] =  
     "integrate e**(-s*t)*((a*t)**3) dt"
     " from t=0 to infinity";  
/* ---------------------------------- */
/* ---------------------------------- */
fe.h
/* --------------------------------- */
/* save as fe.h                      */
/* --------------------------------- */
#define  LOOP  2*300
/* --------------------------------- */
double  s  =    5.;
double  aa =    2.;
/* --------------------------------- */
double F(
double t)
{
       return( (pow(t,4)) );
}
char  Feq[] =  "t**4";
/* --------------------------------- */
double Fa(
double t)
{
        return( (pow(aa*t,4)) );
}
char  Faeq[] =  "(a*t)**4";
/* --------------------------------- */
/* ---------------------------------
   Laplace transform of F(t)
   --------------------------------- */
double f(
double s)
{
         return(24./pow(s,5));
}
char  feq[] =  "(24/s^5)";
/* ---------------------------------- */
double f_s(
double s)
{
        return( (1./aa) * (24./pow((s/aa),5)));
}
char  f_seq[] =  "1/a * (24/(s/a)^5)";
char  f2seq[] =  "24*a^4/s^5";
/* ---------------------------------- */
/* ---------------------------------- */
double b = 100.;    char beq[] = "100";
double a =   0.;    char aeq[] =   "0";
/* ---------------------------------- */
/* ---------------------------------- */
char Mathematica_eq[] =  
     "integrate e**(-s*t)*((a*t)**4) dt"
     " from t=0 to infinity";  
/* ---------------------------------- */
/* ---------------------------------- */
ff.h
/* --------------------------------- */
/* save as ff.h                      */
/* --------------------------------- */
#define  LOOP  2*300
/* --------------------------------- */
double  s  =  1./4.;
double  aa =     2.;
/* --------------------------------- */
double F(
double t)
{
       return( (sin(t)) );
}
char  Feq[] =  "sin(t)";
/* --------------------------------- */
double Fa(
double t)
{
       return(  (sin(aa*t)) );
}
char  Faeq[] =  "sin(a*t)";
/* --------------------------------- */
/* ---------------------------------
   Laplace transform of F(t)
   --------------------------------- */
double f(
double s)
{
         return((1./(s*s+1.)));
}
char  feq[] =  "(1/(s^2+1))";
/* ---------------------------------- */
double f_s(
double s)
{
      return(  (1./aa) * (1./(pow(s/aa,2)+1.))  );
}
char  f_seq[] =  "1/a *(1./((s/a)^2+1)";
char  f2seq[] =  "a /(s^2+a^2)";
/* ---------------------------------- */
/* ---------------------------------- */
double b = 100.;    char beq[] = "100";
double a =   0.;    char aeq[] =   "0";
/* ---------------------------------- */
/* ---------------------------------- */
char Mathematica_eq[] =  
     "integrate e**(-s*t)*(sin(a*t)) dt"
     " from t=0 to infinity";  
/* ---------------------------------- */
/* ---------------------------------- */
fg.h
/* --------------------------------- */
/* save as fg.h                      */
/* --------------------------------- */
#define  LOOP  2*300
/* --------------------------------- */
double  s =  1./5.;
double  aa =    2.;
/* --------------------------------- */
double F(
double t)
{
        return( (cos(t)) );
}
char  Feq[] =   "cos(t)";
/* --------------------------------- */
double Fa(
double t)
{
        return( (cos(aa*t)) );
}
char  Faeq[] =   "cos(at)";
/* --------------------------------- */
/* ---------------------------------
   Laplace transform of F(t)
   --------------------------------- */
double f(
double s)
{
         return((s/(s*s+1.)));
}
char  feq[] =  "(s/(s^2+1))";
/* ---------------------------------- */
double f_s(
double s)
{
      return(  (1./aa) * ((s/aa)/(pow(s/aa,2)+1.))  );
}
char  f_seq[] =  "1/a *((s/a)/((s/a)^2+1))";
char  f2seq[] =  "s/(s^2+a^2)";
/* ---------------------------------- */
/* ---------------------------------- */
double b = 100.;    char beq[] = "100";
double a =   0.;    char aeq[] =   "0";
/* ---------------------------------- */
/* ---------------------------------- */
char Mathematica_eq[] =  
     "integrate e**(-s*t)*(cos(a*t)) dt"
     " from t=0 to infinity";  
/* ---------------------------------- */
/* ---------------------------------- */
fh.h
/* --------------------------------- */
/* save as fh.h                      */
/* --------------------------------- */
#define  LOOP  2*300
/* --------------------------------- */
double  s =  2.;
double  aa = .5;
/* --------------------------------- */
double F(
double t)
{
        return( (sinh(t)) );
}
char  Feq[] =  "sinh(t)";
/* --------------------------------- */
double Fa(
double t)
{
        return( (sinh(aa*t)) );
}
char  Faeq[] =  "sinh(a*t)";
/* --------------------------------- */
/* ---------------------------------
   Laplace transform of F(t)
   --------------------------------- */
double f(
double s)
{
         return((1/(s*s-1.)));
}
char  feq[] =  "(1/(s^2-1))";
/* ---------------------------------- */
double f_s(
double s)
{
      return(  (1./aa) * (1/(pow(s/aa,2)-1.)) );
}
char  f_seq[] =  "1/a * (1/((s/a)^2-1))";
char  f2seq[] =  "(a/(s^2-a^2))";
/* ---------------------------------- */
/* ---------------------------------- */
double b = 100.;    char beq[] = "100";
double a =   0.;    char aeq[] =   "0";
/* ---------------------------------- */
/* ---------------------------------- */
char Mathematica_eq[] =  
     "integrate e**(-s*t)*(sinh(.5*t)) dt"
     " from t=0 to infinity";  
/* ---------------------------------- */
/* ---------------------------------- */
fi.h
 
/* --------------------------------- */
/* save as fi.h                      */
/* --------------------------------- */
#define  LOOP  2*300
/* --------------------------------- */
double  s =  2.;
double  aa = .5;
/* --------------------------------- */
double F(
double t)
{
       return( (cosh(t)) );
}
char  Feq[] =  "cosh(t)";
/* --------------------------------- */
double Fa(
double t)
{
       return( (cosh(aa*t)) );
}
char  Faeq[] =  "cosh(a*t)";
/* --------------------------------- */
/* ---------------------------------
   Laplace transform of F(t)
   --------------------------------- */
double f(
double s)
{
         return((s/(s*s-1.)));
}
char  feq[] =  "(s/(s^2-1))";
/* ---------------------------------- */
double f_s(
double s)
{
      return(   (1./aa) * ((s/aa)/(pow(s/aa,2)-1.))   );
}
char  f_seq[] =  "((s/a)/((s/a)^2-1))";
char  f2seq[] =  "(s/(s^2-a^2))";
/* ---------------------------------- */
/* ---------------------------------- */
double b = 100.;    char beq[] = "100";
double a =   0.;    char aeq[] =   "0";
/* ---------------------------------- */
/* ---------------------------------- */
char Mathematica_eq[] =  
     "integrate e**(-s*t)*(cosh(a*t)) dt"
     " from t=0 to infinity";  
/* ---------------------------------- */
/* ---------------------------------- */
fj.h
/* --------------------------------- */
/* save as fj.h                      */
/* --------------------------------- */
#define  LOOP  2*300
/* --------------------------------- */
double  s =  2.;
double  aa = .5;
/* --------------------------------- */
double F(
double t)
{
        return( (exp(t)) );
}
char  Feq[] =  "exp(t)";
/* --------------------------------- */
double Fa(
double t)
{
        return( (exp(aa*t)) );
}
char  Faeq[] =  "exp(a*t)";
/* --------------------------------- */
/* ---------------------------------
   Laplace transform of F(t)
   --------------------------------- */
double f(
double s)
{
         return((1/(s-1.)));
}
char  feq[] =  "(1/(s-1))";
/* ---------------------------------- */
double f_s(
double s)
{
      return(  (1./aa) * (1/((s/aa)-1.))  );
}
char  f_seq[] =  "1/a *(1/((s/a)-1)) ";
char  f2seq[] =  "1/(s-a)";
/* ---------------------------------- */
/* ---------------------------------- */
double b = 100.;    char beq[] = "100";
double a =   0.;    char aeq[] =   "0";
/* ---------------------------------- */
/* ---------------------------------- */
char Mathematica_eq[] =  
     "integrate e**(-s*t)*(exp(a*t)) dt"
     " from t=0 to infinity";  
/* ---------------------------------- */
/* ---------------------------------- */