Sommaire
Installer ce fichier dans votre répertoire de travail.
Texte de la légende
|
|
fb.h
|
/* --------------------------------- */
/* save as fb.h */
/* --------------------------------- */
#define LOOP 2*300
/* --------------------------------- */
double s = 1./2.;
double aa = 2.;
/* --------------------------------- */
double F(
double t)
{
return( (t) );
}
char Feq[] = "t";
/* --------------------------------- */
double Fa(
double t)
{
return( (aa*t) );
}
char Faeq[] = "a*t";
/* --------------------------------- */
/* ---------------------------------
Laplace transform of F(t)
--------------------------------- */
double f(
double s)
{
return((1./(s*s)));
}
char feq[] = "(1/s^2)";
/* --------------------------------- */
double f_s(
double s)
{
return( (1./aa) * (1./(pow(s/aa,2))));
}
char f_seq[] = "1/a * (1/(s/a)^2)";
char f2seq[] = "a/s^2";
/* ---------------------------------- */
/* ---------------------------------- */
double b = 100.; char beq[] = "100";
double a = 0.; char aeq[] = "0";
/* ---------------------------------- */
/* ---------------------------------- */
char Mathematica_eq[] =
"integrate e**(-s*t)*(a*t) dt"
" from t=0 to infinity";
/* ---------------------------------- */
/* ---------------------------------- */
|
|
fc.h
|
/* --------------------------------- */
/* save as fc.h */
/* --------------------------------- */
#define LOOP 2*300
/* --------------------------------- */
double s = 1./2.;
double aa = 2.;
/* --------------------------------- */
double F(
double t)
{
return( pow(t,2) );
}
char Feq[] = "t**2";
/* --------------------------------- */
double Fa(
double t)
{
return( pow(aa*t,2) );
}
char Faeq[] = "(a*t)**2";
/* --------------------------------- */
/* ---------------------------------
Laplace transform of F(t)
--------------------------------- */
double f(
double s)
{
return( 2./pow(s,3));
}
char feq[] = "(2/s^3)";
/* ---------------------------------- */
double f_s(
double s)
{
return( (1./aa) * 2./pow(s/aa,3));
}
char f_seq[] = "(1/a) * (2/(s/a)^3)";
char f2seq[] = "2*a^2/(s^3)";
/* ---------------------------------- */
/* ---------------------------------- */
double b = 100.; char beq[] = "100";
double a = 0.; char aeq[] = "0";
/* ---------------------------------- */
/* ---------------------------------- */
char Mathematica_eq[] =
"integrate e**(-s*t)*(a*t)**2 dt"
" from t=0 to infinity";
/* ---------------------------------- */
/* ---------------------------------- */
|
|
fd.h
|
/* --------------------------------- */
/* save as fd.h */
/* --------------------------------- */
#define LOOP 2*300
/* --------------------------------- */
double s = 1./2.;
double aa = 2.;
/* --------------------------------- */
double F(
double t)
{
return( pow(t,3) );
}
char Feq[] = "t**3";
/* --------------------------------- */
double Fa(
double t)
{
return( pow(aa*t,3) );
}
char Faeq[] = "(a*t)**3";
/* --------------------------------- */
/* ---------------------------------
Laplace transform of F(t)
--------------------------------- */
double f(
double s)
{
return( 6./pow(s,4));
}
char feq[] = "6/s^4";
/* ---------------------------------- */
double f_s(
double s)
{
return( (1./aa) * 6./pow(s/aa,4));
}
char f_seq[] = "(1/a) * (6/(s/a)^4)";
char f2seq[] = "6*a^3/s^4";
/* ---------------------------------- */
/* ---------------------------------- */
double b = 100.; char beq[] = "100";
double a = 0.; char aeq[] = "0";
/* ---------------------------------- */
/* ---------------------------------- */
char Mathematica_eq[] =
"integrate e**(-s*t)*((a*t)**3) dt"
" from t=0 to infinity";
/* ---------------------------------- */
/* ---------------------------------- */
|
|
fe.h
|
/* --------------------------------- */
/* save as fe.h */
/* --------------------------------- */
#define LOOP 2*300
/* --------------------------------- */
double s = 5.;
double aa = 2.;
/* --------------------------------- */
double F(
double t)
{
return( (pow(t,4)) );
}
char Feq[] = "t**4";
/* --------------------------------- */
double Fa(
double t)
{
return( (pow(aa*t,4)) );
}
char Faeq[] = "(a*t)**4";
/* --------------------------------- */
/* ---------------------------------
Laplace transform of F(t)
--------------------------------- */
double f(
double s)
{
return(24./pow(s,5));
}
char feq[] = "(24/s^5)";
/* ---------------------------------- */
double f_s(
double s)
{
return( (1./aa) * (24./pow((s/aa),5)));
}
char f_seq[] = "1/a * (24/(s/a)^5)";
char f2seq[] = "24*a^4/s^5";
/* ---------------------------------- */
/* ---------------------------------- */
double b = 100.; char beq[] = "100";
double a = 0.; char aeq[] = "0";
/* ---------------------------------- */
/* ---------------------------------- */
char Mathematica_eq[] =
"integrate e**(-s*t)*((a*t)**4) dt"
" from t=0 to infinity";
/* ---------------------------------- */
/* ---------------------------------- */
|
|
ff.h
|
/* --------------------------------- */
/* save as ff.h */
/* --------------------------------- */
#define LOOP 2*300
/* --------------------------------- */
double s = 1./4.;
double aa = 2.;
/* --------------------------------- */
double F(
double t)
{
return( (sin(t)) );
}
char Feq[] = "sin(t)";
/* --------------------------------- */
double Fa(
double t)
{
return( (sin(aa*t)) );
}
char Faeq[] = "sin(a*t)";
/* --------------------------------- */
/* ---------------------------------
Laplace transform of F(t)
--------------------------------- */
double f(
double s)
{
return((1./(s*s+1.)));
}
char feq[] = "(1/(s^2+1))";
/* ---------------------------------- */
double f_s(
double s)
{
return( (1./aa) * (1./(pow(s/aa,2)+1.)) );
}
char f_seq[] = "1/a *(1./((s/a)^2+1)";
char f2seq[] = "a /(s^2+a^2)";
/* ---------------------------------- */
/* ---------------------------------- */
double b = 100.; char beq[] = "100";
double a = 0.; char aeq[] = "0";
/* ---------------------------------- */
/* ---------------------------------- */
char Mathematica_eq[] =
"integrate e**(-s*t)*(sin(a*t)) dt"
" from t=0 to infinity";
/* ---------------------------------- */
/* ---------------------------------- */
|
|
fg.h
|
/* --------------------------------- */
/* save as fg.h */
/* --------------------------------- */
#define LOOP 2*300
/* --------------------------------- */
double s = 1./5.;
double aa = 2.;
/* --------------------------------- */
double F(
double t)
{
return( (cos(t)) );
}
char Feq[] = "cos(t)";
/* --------------------------------- */
double Fa(
double t)
{
return( (cos(aa*t)) );
}
char Faeq[] = "cos(at)";
/* --------------------------------- */
/* ---------------------------------
Laplace transform of F(t)
--------------------------------- */
double f(
double s)
{
return((s/(s*s+1.)));
}
char feq[] = "(s/(s^2+1))";
/* ---------------------------------- */
double f_s(
double s)
{
return( (1./aa) * ((s/aa)/(pow(s/aa,2)+1.)) );
}
char f_seq[] = "1/a *((s/a)/((s/a)^2+1))";
char f2seq[] = "s/(s^2+a^2)";
/* ---------------------------------- */
/* ---------------------------------- */
double b = 100.; char beq[] = "100";
double a = 0.; char aeq[] = "0";
/* ---------------------------------- */
/* ---------------------------------- */
char Mathematica_eq[] =
"integrate e**(-s*t)*(cos(a*t)) dt"
" from t=0 to infinity";
/* ---------------------------------- */
/* ---------------------------------- */
|
|
fh.h
|
/* --------------------------------- */
/* save as fh.h */
/* --------------------------------- */
#define LOOP 2*300
/* --------------------------------- */
double s = 2.;
double aa = .5;
/* --------------------------------- */
double F(
double t)
{
return( (sinh(t)) );
}
char Feq[] = "sinh(t)";
/* --------------------------------- */
double Fa(
double t)
{
return( (sinh(aa*t)) );
}
char Faeq[] = "sinh(a*t)";
/* --------------------------------- */
/* ---------------------------------
Laplace transform of F(t)
--------------------------------- */
double f(
double s)
{
return((1/(s*s-1.)));
}
char feq[] = "(1/(s^2-1))";
/* ---------------------------------- */
double f_s(
double s)
{
return( (1./aa) * (1/(pow(s/aa,2)-1.)) );
}
char f_seq[] = "1/a * (1/((s/a)^2-1))";
char f2seq[] = "(a/(s^2-a^2))";
/* ---------------------------------- */
/* ---------------------------------- */
double b = 100.; char beq[] = "100";
double a = 0.; char aeq[] = "0";
/* ---------------------------------- */
/* ---------------------------------- */
char Mathematica_eq[] =
"integrate e**(-s*t)*(sinh(.5*t)) dt"
" from t=0 to infinity";
/* ---------------------------------- */
/* ---------------------------------- */
|
|
fi.h
|
/* --------------------------------- */
/* save as fi.h */
/* --------------------------------- */
#define LOOP 2*300
/* --------------------------------- */
double s = 2.;
double aa = .5;
/* --------------------------------- */
double F(
double t)
{
return( (cosh(t)) );
}
char Feq[] = "cosh(t)";
/* --------------------------------- */
double Fa(
double t)
{
return( (cosh(aa*t)) );
}
char Faeq[] = "cosh(a*t)";
/* --------------------------------- */
/* ---------------------------------
Laplace transform of F(t)
--------------------------------- */
double f(
double s)
{
return((s/(s*s-1.)));
}
char feq[] = "(s/(s^2-1))";
/* ---------------------------------- */
double f_s(
double s)
{
return( (1./aa) * ((s/aa)/(pow(s/aa,2)-1.)) );
}
char f_seq[] = "((s/a)/((s/a)^2-1))";
char f2seq[] = "(s/(s^2-a^2))";
/* ---------------------------------- */
/* ---------------------------------- */
double b = 100.; char beq[] = "100";
double a = 0.; char aeq[] = "0";
/* ---------------------------------- */
/* ---------------------------------- */
char Mathematica_eq[] =
"integrate e**(-s*t)*(cosh(a*t)) dt"
" from t=0 to infinity";
/* ---------------------------------- */
/* ---------------------------------- */
|
|
fj.h
|
/* --------------------------------- */
/* save as fj.h */
/* --------------------------------- */
#define LOOP 2*300
/* --------------------------------- */
double s = 2.;
double aa = .5;
/* --------------------------------- */
double F(
double t)
{
return( (exp(t)) );
}
char Feq[] = "exp(t)";
/* --------------------------------- */
double Fa(
double t)
{
return( (exp(aa*t)) );
}
char Faeq[] = "exp(a*t)";
/* --------------------------------- */
/* ---------------------------------
Laplace transform of F(t)
--------------------------------- */
double f(
double s)
{
return((1/(s-1.)));
}
char feq[] = "(1/(s-1))";
/* ---------------------------------- */
double f_s(
double s)
{
return( (1./aa) * (1/((s/aa)-1.)) );
}
char f_seq[] = "1/a *(1/((s/a)-1)) ";
char f2seq[] = "1/(s-a)";
/* ---------------------------------- */
/* ---------------------------------- */
double b = 100.; char beq[] = "100";
double a = 0.; char aeq[] = "0";
/* ---------------------------------- */
/* ---------------------------------- */
char Mathematica_eq[] =
"integrate e**(-s*t)*(exp(a*t)) dt"
" from t=0 to infinity";
/* ---------------------------------- */
/* ---------------------------------- */
|