Aller au contenu

Mathc initiation/a539

Un livre de Wikilivres.


Sommaire


Installer et compiler ces fichiers dans votre répertoire de travail.

c00b.c
/* --------------------------------- */
/* save as c00b.c                    */
/* --------------------------------- */
#include "x_afile.h"
#include      "fb.h"                 /* Try fb.h, fc.h ... fj.h */
/* --------------------------------- */
int main(void)
{
double  M = LT_dt( expaF, a,b, LOOP, s);

 clrscrn();  
 printf(" The Laplace transform of F(t) is f(s) \n\n" 
        "            / oo                         \n" 
        "           |                             \n" 
        " L{F(t)} = |    exp(-s t) F(t) dt = f(s) \n" 
        "           |                             \n" 
        "           /  0                      \n\n\n");
 
 
 printf(" First translation  property of the Laplace transform is :\n\n"
        "   L{exp(a t) * F(t)} = f(s-a)                            \n\n");
 stop();

 clrscrn();
 printf("  /+oo                                                     \n"
        " |  exp(-s t) [exp(a t) F(t)] dt = f(s-a)   with  s = %+.3f\n"
        " /0                                          and  a = %+.3f\n\n\n", 
                                s, aa); 
        
 printf(" If   F(t) : t-> %s " 
        " Then exp(a*t) * F(t) : t-> %s  \n\n", Feq, expaFeq);     

 printf("       /+oo                              \n"
        " Then |     exp(-s t) [%s] dt = (%+.3f)  \n" 
        "      /0                             \n\n\n", expaFeq, M); 
        
 printf(" And : L{exp(a*t) * F(t)} = f(s-a)    \n"
        "                          = %s        \n"
        "                          = %s        \n"
        "                          = (%+.3f) \n\n", 
                                 f_seq,f2seq, f_s(s));  
        
 printf(" Mathematica Code\n\n"
        " %s \n\n", Mathematica_eq);    
 stop(); 
 
 return 0;
}
/* --------------------------------- */
/* --------------------------------- */


Exemple de sortie écran :

 The Laplace transform of F(t) is f(s) 

            / oo                         
           |                             
 L{F(t)} = |    exp(-s t) F(t) dt = f(s) 
           |                             
           /  0                      


 First translation  property of the Laplace transform is :

   L{exp(a t) * F(t)} = f(s-a)                            

 Press return to continue.


Exemple de sortie écran :

  /+oo                                                     
 |   exp(-s t) [exp(a t) F(t)] dt = f(s-a)  with  s = +0.600
 /0                                          and  a = +0.400


 If   F(t) : t-> t  Then exp(a*t) * F(t) : t-> exp(a*t) * t  

       /+oo                              
 Then |     exp(-s t) [exp(a*t) * t] dt = (+24.999998)  
      /0                             


 And : L{exp(a*t) * F(t)} = f(s-a)    
                          = 1/(s-a)^2        
                          = 1/(s-a)^2        
                          = (+25.000) 

 Mathematica Code

 integrate exp(-s*t) * exp(a*t) * t dt from t=0 to infinity 

 Press return to continue.