Planétologie/La planète Jupiter

Un livre de Wikilivres.
Sauter à la navigation Sauter à la recherche
Anneaux de Jupiter.

Jupiter est la planète la plus grosse et la plus lourde du système solaire. Sa masse énorme est égale à 2,5 fois la somme des masses de toutes les autres planètes et vaut 317,8 fois celle de la Terre ! Il faut dire que le volume de cette planète est assez impressionnant : 1 321,3 fois le volume terrestre. Par contre, sa densité est très faible : à peine 1,326. Seule l'observation et la forme de son orbite nous permettent d'obtenir des informations sur Jupiter ; on en connaît peu de choses.

Jupiter est entouré de tout un système de corps solides, qu'il s'agisse de satellites ou d'anneaux de petits corps solides et/ou glacés. L'ensemble de ces corps, satellite et anneaux, forme ce qu'on appelle le système jovien. Jupiter a notamment un grand nombre de satellites : 69 en tout ! Les plus connus sont certainement les satellites Io, Europe, Ganymède et Callisto. Un chapitre sera ultérieurement dédié à ces quatre satellites. Outre les satellites, Jupiter compte trois anneaux : l'anneau Halo, l'anneau principal et les anneaux Gossamer. Ces anneaux sont nés de l'agglomération de poussières émises par les divers satellites, ainsi que, mais moins, par des poussières interplanétaires capturées. Les deux premiers proviennent de poussières émises par les satellites Adrastée et Metis.

Structure interne[modifier | modifier le wikicode]

Jupiter - Coupe intérieure

La structure interne de Jupiter est mal connue, mais les scientifiques ont quelques suppositions à son sujet.

Structure interne[modifier | modifier le wikicode]

On sait qu'il y a un noyau rocheux sphérique au centre de Jupiter, ce qui expliquerait sa densité supérieure à celle de son atmosphère. Les calculs de densité donnent une valeur proche de celle des roches telluriques pour le noyau, qui est donc supposé rocheux. Il aurait une taille similaire à celle de la Terre. Celui-ci est soumis à la pression de l'atmosphère située au-dessus, qui est particulièrement intense, proche de 3 000 Giga pascals. La compression du noyau rocheux entraîne une élévation de sa température, par un effet nommé mécanisme de Kelvin-Helmholtz. La température du cœur serait proche de 15 000 Kelvin. Il n'est pas impossible que ce noyau rocheux soit totalement solide, mais il se pourrait qu'il soit totalement fondu : soit la pression est suffisante pour garder le noyau solide, soit les températures au centre de Jupiter seraient trop élevées pour garder les roches à l'état solide.

Le noyau de roches fondues serait surmonté par une couche de "glaces", si tant est que ce terme puisse s'appliquer à des matériaux fondus. Ces glaces seraient composées essentiellement d'eau, avec de l'ammoniac et du méthane liquide. Cette couche de glaces aurait une épaisseur de 7000 kilomètres, similaire à l'épaisseur du noyau rocheux. Là encore, la forte pression entraîne une forte température, ce qui fait que ces glaces sont totalement fondues.

La couche de « glaces » est surmontée par des couches d'hydrogène liquide. L'hydrogène reste à l'état liquide à cause de la pression à l'intérieur de la planète. Suivant la profondeur, et donc la pression, cet hydrogène peut prendre diverses formes. L'hydrogène de surface est de l'hydrogène normal, tandis que la couche profonde serait une couche d'hydrogène à l'état métallique. L’hydrogène métallique est de l'hydrogène liquide qui s'ioniserait et conduirait le courant électrique. L'origine de la magnétosphère jovienne proviendrait justement de l'état conducteur de l'hydrogène métallique profond.

Ces deux couches d’hydrogène liquide sont surmontées par une atmosphère d'hydrogène gazeux. Chose assez spéciale, il n'y a pas de séparation précise entre atmosphère et couches d'hydrogènes. A la place, une portion de plus en plus grande d'hydrogène passe sous forme liquide quand on descend en profondeur. La limite est donc floue.

Chaleur interne[modifier | modifier le wikicode]

Jupiter émet plus de chaleur qu'elle n'en reçoit du Soleil. La différence provient de la contraction de la planète, qui dégage de la chaleur gravitationnelle, laquelle est convertie en énergie cinétique. Cela provient du mécanisme de Kelvin-Helmholtz mentionné plus haut. Pour faire simple, prenons une planète qui se refroidit. Celle-ci subit une contraction thermique, ce qui fait diminuer son rayon. Dans ces conditions, une partie de l'énergie potentielle de gravité est dissipée par la contraction, sous forme de chaleur ou de radiations. La portion d'énergie gravitationnelle libérée sous forme de chaleur réchauffe alors le cœur de la planète.

Rendre compte de ce mécanisme est simple. Pour cela, partons de l'énergie potentielle d'un corps sphérique (ici, la planète).

Supposons que la contraction fasse passer la planète du rayon au rayon . L'énergie potentielle libérée lors de la contraction est alors de :

D'après le théorème du Viriel, la moitié de cette énergie potentielle est libérée sous la forme de radiations et l'autre sous forme de chaleur. Dans ces conditions, la chaleur engendrée est :

Atmosphère[modifier | modifier le wikicode]

Great Red Spot From Voyager 1

L'atmosphère jovienne est assez mouvementée. Outre les vents horizontaux violents qui la parcourent, on y observe des cyclones de grande taille, des orages récurrents et d'autres perturbations atmosphériques de grande taille. Les nuages ont de grandes dimensions et surmontent des brumes assez opaques qui recouvrent la planète.

Composition chimique[modifier | modifier le wikicode]

L'atmosphère jovienne a une composition très similaire à celle de la nébuleuse primordiale : 93% d'hydrogène et le reste en hélium et éléments traces. Sa densité est donc similaire à celle de l'hydrogène dans les conditions joviennes.

Élément chimique Pourcentage de l'atmosphère en nombre de molécules
Dihydrogène (H2) ~86 %
Hélium (He) ~13 %
Méthane (CH4) 0,1 %
Vapeur d'eau (H2O) 0,1 %
Ammoniac (NH3) 0,02 %
Éthane (C2H6) 0,0002 %
Phosphine (PH3) 0,0001
Sulfure d'hydrogène (H2S) < 0,0001 %

Structure verticale[modifier | modifier le wikicode]

L’atmosphère aurait une structure verticale assez typique, avec une troposphère, une stratosphère et une thermosphère. Pour rappel, la troposphère est une couche où la température et la pression diminuent avec l'altitude. Dans la stratosphère, la température reste plus ou moins constante, avec parfois une légère augmentation avec l'altitude et/ou la pression. Enfin, les couches hautes voient leur température augmenter rapidement, chauffées par le rayonnement solaire, en même temps que leur densité diminue fortement.

Structure of Jovian atmosphere
Fonctionnement-radiometre-MWR-sonde-spatiale-Juno-fr

La troposphère a pour point commun avec l'atmosphère terrestre d'avoir des nuages assez nombreux. Selon l'altitude, les nuages auraient une composition chimique différente. Les couches les plus basses seraient composés d'eau sous forme de glace et de vapeur, comme les nuages terrestres nommés cirrus. A des altitudes supérieures, les nuages seraient essentiellement composés dérivés de l'ammoniac. Enfin, les nuages situés encore plus haut seraient composés en grosse majorité d'ammoniac et de composés dérivés plus rares. Ces suppositions proviennent de travaux de laboratoire, pas d'observations in situ.

Altitude Pression Couche troposphérique
10 bar Base de la troposphère
3,0 à 7,0 bar Nuages probables de glace d'eau
1,5 à 3,0 bar Nuages de sulfure d'ammonium
0,7 à 1,0 bar Nuages visibles de glace d'ammoniac
0 km 1 bar Altitude zéro conventionnelle de Jupiter
50 km 0,1 bar Altitude approximative de la tropopause

Il est aujourd’hui admis qu'il existe des mouvements convectifs à la surface de l'atmosphère, dans la troposphère.

Bandes de nuages[modifier | modifier le wikicode]

Jupiter cloud bands

L'atmosphère jovienne, vue de face, est structurée en bandes parallèles perpendiculaires aux méridiens, des bandes sombres s'intercalant entre des bandes claires. Les bandes blanches sont appelées bandes dans la littérature, tandis que les bandes sombres sont appelées zones. Il y a en tout 15 bandes, qui sont relativement symétriques par rapport à l'équateur : 7 bandes dans l’hémisphère nord, 7 dans l'hémisphère sud et une à l'équateur. Les différences de couleurs entre bandes et zones sont causées par des différences de composition chimique et de température. Il apparaît que les bandes sont plus froides que les zones. De plus, les zones sont assez opaques aux ondes radio, alors que les bandes ne le sont pas autant. Cela impliquerait des différences de composition chimique : les bandes seraient pauvres en ammoniac, alors que les zones en seraient enrichies. Ces différences de température et de composition chimique laissent penser que les bandes et zones auraient une origine convective : l'air chaud remonterait dans les bandes, avant de redescendre dans les zones.

Les zones de transition entre les bandes sont des zones dites de courant-jets, où les vents sont très forts, plus forts qu'à l'intérieur des bandes. Qui plus est, les vents dans une bande peuvent aller dans un sens différent des bandes qui l'entourent. Chaque bande a une vitesse différente de ses voisines. Les zones de transition entre bandes sont donc très élevées, en raison de phénomènes de cisaillements entre bandes.

Vitesse des vents sur Jupiter
Illustration de la vitesse différentielle des vents entre zones et bandes.

Cyclones joviens[modifier | modifier le wikicode]

Les vents sont très puissants dans l'atmosphère jovienne. Ceux-ci sont essentiellement des vents horizontaux, perpendiculaires aux méridiens. Il arrive que des cyclones et/ou anticyclones de grade taille se forment entre les bandes, sans doute à cause des vents de cisaillement des courants-jets. Contrairement à ce qu'on voit sur Terre, ces cyclones/anticyclones survivent plusieurs années, parfois plusieurs siècles. Le plus connu est clairement la grande tache rouge, un anticyclone de grande taille situé dans hémisphère sud, suffisamment grand pour être visible depuis la Terre. Celui-ci a une taille similaire à celle de la Terre !

Jupiter's storm