Utilisateur:Xzapro4/Maquettes/WVWB Maths

Un livre de Wikilivres.
Aller à la navigation Aller à la recherche
Ressources supplémentaires sur la Wikiversitélink={{{link}}}

Des ressources pédagogiques complémentaires à ce manuel sont disponibles sur Wikiversité, la communauté pédagogique libre.

Consultez la page Nombre dérivé et posez vos questions.

Nombre dérivé d'une fonction en x = a[modifier | modifier le wikicode]

Introduction[modifier | modifier le wikicode]

L'accroissement moyen d'une fonction sur un intervalle peut être utile pour une première approche, mais n'est pas forcément représentatif du comportement de la fonction sur cet intervalle. Prenons l'exemple de la fonction ci-dessous :

InsuffisanceAccroissementMoyen.svg

Entre A et B, les variations de la fonction sont beaucoup plus brutales que ne le laisse apparaître l'accroissement moyen. L'idéal serait de disposer d'un outil plus fin qui rendrait compte de l'accroissement en chaque point. Géométriquement, un tel outil existe : il s'agit de la tangente à une courbe en un point.

800px-Tangent-calculus a.png

Le coefficient directeur de la tangente en un point A est ici la grandeur qui nous intéresse le plus, car il correspond à l'accroissement de la fonction au point A d'abscisse a.

Ce qu'on cherche à faire est donc : trouver un outil permettant d'obtenir l'accroissement d'une fonction, c'est-à-dire le coefficient directeur de la tangente à sa courbe, en tout point de l'intervalle de définition.

Définition du nombre dérivé[modifier | modifier le wikicode]

Wikiversity-logo.svg Activité d'introduction
Secant-calculus.svg

Soit

La limite de l'accroissement moyen de ƒ entre et lorsque tend vers 0 est appelée nombre dérivé de ƒ en et noté [1].

En mathématiques, on utilise la notation avec une prime pour désigner la dérivée.

Notation différentielle[modifier | modifier le wikicode]

En physique, on utilise plus couramment une autre notation, appelée notation différentielle. On note .

Le symbole « petit d » en physique signifie une petite variation de la grandeur qui suit le d. La notation signifie donc qu'on considère :

  • une toute petite variation des valeurs de ƒ (dƒ, qui correspond à lorsque )
  • divisée par une toute petite variation des valeurs de x autour de a (dx, qui correspond à lorsque )
  • le tout au point d'abscisse a

Interprétation graphique[modifier | modifier le wikicode]

est le coefficient directeur de la tangente à la courbe représentative de ƒ au point A.

Restrictions[modifier | modifier le wikicode]

Nous verrons par la suite que le nombre dérivé n'est pas toujours défini.

Si, en un point existe, on dit que ƒ est dérivable en a.

Notes[modifier | modifier le wikicode]

  1. ƒ '(a) se lit « f prime de a »