Partant d'un référentiel galiléen plan en coordonnées circulaires
t
′
,
r
′
,
ϕ
′
{\displaystyle t',r',\phi '}
,
construisons un référentiel tournant avec la fréquence angulaire
ω
{\displaystyle \omega }
. La transformation s'écrit
t
′
=
t
r
′
=
r
ϕ
′
=
ϕ
+
ω
t
{\displaystyle {\begin{matrix}t'&=&t\\r'&=&r\\\phi '&=&\phi +\omega t\end{matrix}}}
De la relation
−
c
2
d
t
′
2
+
d
r
′
2
+
r
′
2
d
ϕ
′
2
=
g
i
j
d
x
i
d
x
j
{\displaystyle -c^{2}dt'^{2}+dr'^{2}+r'^{2}d\phi '^{2}=g_{ij}dx^{i}dx^{j}}
est facile d'obtenir le
tenseur métrique
dans le référentiel tournant. Il n'est pas diagonal :
g
t
t
=
−
c
2
+
ω
2
r
2
g
t
ϕ
=
g
ϕ
t
=
ω
r
2
g
r
r
=
1
g
ϕ
ϕ
=
r
2
{\displaystyle {\begin{matrix}g_{tt}&=&-c^{2}+\omega ^{2}r^{2}\\g_{t\phi }=g_{\phi t}&=&\omega r^{2}\\g_{rr}&=&1\\g_{\phi \phi }&=&r^{2}\end{matrix}}}
det
g
=
−
c
2
r
2
{\displaystyle \det g=-c^{2}r^{2}}
g
t
t
=
−
c
−
2
g
t
ϕ
=
g
ϕ
t
=
c
−
2
ω
g
r
r
=
1
g
ϕ
ϕ
=
r
−
2
−
c
−
2
ω
2
{\displaystyle {\begin{matrix}g^{tt}&=&-c^{-2}\\g^{t\phi }=g^{\phi t}&=&c^{-2}\omega \\g^{rr}&=&1\\g^{\phi \phi }&=&r^{-2}-c^{-2}\omega ^{2}\end{matrix}}}
g
t
t
,
r
=
2
ω
2
r
g
t
ϕ
,
r
=
g
ϕ
t
,
r
=
2
ω
r
g
ϕ
ϕ
,
r
=
2
r
{\displaystyle {\begin{matrix}g_{tt,r}&=&2\omega ^{2}r\\g_{t\phi ,r}=g_{\phi t,r}&=&2\omega r\\g_{\phi \phi ,r}&=&2r\end{matrix}}}
Γ
t
|
t
r
=
Γ
t
|
r
t
=
ω
2
r
Γ
t
|
r
ϕ
=
Γ
t
|
ϕ
r
=
ω
r
Γ
r
|
t
t
=
−
ω
2
r
Γ
r
|
t
ϕ
=
Γ
ϕ
|
ϕ
t
=
−
ω
r
Γ
ϕ
|
t
r
=
Γ
ϕ
|
r
t
=
ω
r
Γ
r
|
ϕ
ϕ
=
−
r
Γ
r
|
r
ϕ
=
Γ
ϕ
|
ϕ
r
=
r
{\displaystyle {\begin{matrix}\Gamma _{t|tr}=\Gamma _{t|rt}&=&\omega ^{2}r\\\Gamma _{t|r\phi }=\Gamma _{t|\phi r}&=&\omega r\\\Gamma _{r|tt}&=&-\omega ^{2}r\\\Gamma _{r|t\phi }=\Gamma _{\phi |\phi t}&=&-\omega r\\\Gamma _{\phi |tr}=\Gamma _{\phi |rt}&=&\omega r\\\Gamma _{r|\phi \phi }&=&-r\\\Gamma _{r|r\phi }=\Gamma _{\phi |\phi r}&=&r\end{matrix}}}
Γ
t
t
r
=
−
ω
2
r
Γ
t
ϕ
r
=
Γ
ϕ
t
r
=
−
ω
r
Γ
ϕ
ϕ
r
=
−
r
Γ
t
r
ϕ
=
Γ
r
t
ϕ
=
ω
r
−
1
Γ
r
ϕ
ϕ
=
Γ
ϕ
r
ϕ
=
r
−
1
{\displaystyle {\begin{matrix}\Gamma _{tt}^{r}&=&-\omega ^{2}r\\\Gamma _{t\phi }^{r}=\Gamma _{\phi t}^{r}&=&-\omega r\\\Gamma _{\phi \phi }^{r}&=&-r\\\Gamma _{tr}^{\phi }=\Gamma _{rt}^{\phi }&=&\omega r^{-1}\\\Gamma _{r\phi }^{\phi }=\Gamma _{\phi r}^{\phi }&=&r^{-1}\end{matrix}}}