Cosmologie/Le destin de l'univers

Un livre de Wikilivres.
Aller à la navigation Aller à la recherche

Dans les chapitres précédents, nous avons établit les deux équations de Friedmann. Pour rappel, les voici :

On peut déduire bien des choses à partir de ces équations, notamment comment le facteur de Hubble évolue au cours du temps. Cela nous permet de déduire ce qu'il adviendra de l'univers. Continuera-t-il à s'étendre indéfiniment ? Ou au contraire, l'expansion cessera-t-elle au bout d'un certain temps ? L'univers finira-t-il par s'effondrer sur lui-même ? Il n'y a pas 36 possibilités et seuls trois scénarios sont possibles :

  • Dans le premier scénario, l'expansion de l'univers s'inverse après un certain temps, l'univers se contracte et s'effondre sur lui-même : c'est le big-crunch.
  • Dans le second cas, l'expansion de l'univers ne cesse jamais : c'est le scénario du big-rip.
  • Et enfin, dans le dernier scénario, l'expansion de l'univers ne s’arrête jamais, mais celle-ci ralentit progressivement jusqu’à s'annuler après un temps infini : c'est le scénario du big chill.
Trois possibilités pour l'évolution de l'univers.

Dans le second chapitre sur les équations de Friedmann newtonienne, nous avions vu que le destin de l'univers dépendait uniquement de sa courbure, mais pas de son contenu en matière. Et autant ce résultat marche avec seulement de la matière, autant cela change quand on ajoute la constante cosmologique. Nous allons refaire les calculs et l'analyse dans le cas général, avec les équations de Friedmann relativistes.

Facteur de Hubble, facteur d'échelle et destin de l'univers[modifier | modifier le wikicode]

Le scénario qui se matérialise dépend du facteur de Hubble. Rappelons en effet que le facteur de Hubble est le taux d'expansion de l'univers, le taux auquel l'univers augmente de volume. Un H négatif signifie que l'univers se contracte, un H positif signifie que l'univers est en expansion, et un H nul signifie que l'univers est stationnaire. Pour l'étude du destin de l'univers, on se préoccupe du facteur de Hubble obtenu après un temps assez long, pour un âge de l'univers très important. Idéalement, on doit étudier la limite de H quand le temps tend vers l'infini : . On distingue les trois scénarios précédents selon que la limite de H est positive, négative ou nulle.

  • Positive : l'expansion de l'univers ne s’arrête jamais et c'est le big rip qui se matérialise.
  • Nulle : le big chill se matérialise si la limite tend vers 0.
  • Négative : l'expansion s'inverse si la limite devient négative et l'univers finit en big-crunch.

Il est aussi possible de voir les choses à partir du facteur d'échelle, en utilisant la dérivée du facteur d'échelle. Quand , le facteur d'échelle augmente au cours du temps, ce qui implique un univers en expansion. Par contre, implique un facteur d'échelle qui se réduit au cours du temps et donc un univers qui se contracte. Enfin, implique un univers stable, qui n'est ni en expansion ni en contraction.

En théorie, on devrait étudier le destin de l'univers, ce qui veut dire son état quand l'âge de l'univers est très avancé, voire à la limite . Mais les équations précédentes sont écrites avec le facteur d'échelle, pas avec le temps. Cependant, le facteur d'échelle dépend du temps et on peut l'utiliser en remplacement, sous certaines hypothèses.

  • Dans le cas du big crunch, l'univers gonfle avant de se rétracter. Au niveau du facteur d'échelle, cela signifie que le facteur d'échelle est initialement croissant, cesse de croître à un temps bien précis, et décroît au-delà. Au niveau du facteur de Hubble, cela signifie qu'il est d'abord positif (univers en expansion), puis s'annule, et enfin devient négatif. On est donc dans le cas où la dérivée du facteur d'échelle s'annule pour un temps fini.
  • Dans le cas du big chill, la dérivée s'annule, mais seulement pour la limite . L'univers ne cesse de croître et ce n'est qu'après un temps infini qu'il se stabilise.
  • Dans le cas du big rip, la dérivée reste positive quand on passe à la limite . L'univers ne cesse de croître et ne se stabilise pas, même après un temps infini.
Big Crunch Négative Nulle
Big Chill Nulle Infinie
Big Rip Positive

On peut calculer la dérivée du facteur d'échelle en utilisant la formule . Et donc, on peut la calculer indirectement à partir de la première équation de Friedmann. Celle-ci s'écrit en effet, comme on l'a vu dans le chapitre sur l'énergie noire :

Pour rappel, la densité d'énergie est égale à la densité de matière et la densité de rayonnement :

Pour rappel, la densité de matière et de rayonnement évoluent comme suit : et . En injectant dans l'équation précédente, on a :

On simplifie :

On prend alors la limite quand t tend vers l'infini :

En sortant les termes indépendants de t de la limite, on a :

Le cas du big crunch[modifier | modifier le wikicode]

Dans le cas du big crunch, l'univers décroît au-delà d'un certain temps et se ratatine sur lui-même au point d'atteindre un volume nul. Traduit mathématiquement, cela se traduit par les équations suivantes :

On part de l'équation des sections précédentes :

On combine les deux équations précédentes :

On réorganise :

Or, on a vu que le big crunch impliquait que : . En injectant dans l'équation précédente, on trouve :

Cette inégalité nous dit que le big crunch n'est possible que si l'univers a une courbure positive et que celle-ci a une intensité suffisante. Il faut alors que l'effet de la constante cosmologique et de la gravité soient compensés quand l'âge de l'univers a atteint une valeur suffisante.

Le cas du big rip[modifier | modifier le wikicode]

Pour le big-rip, on a, par définition du big rip :

.
.

On part de l'équation des sections précédentes :

On combine les deux équations précédentes :

On réorganise :

On utilise alors la condition . On en déduit que les facteurs et deviennent très petits, au point d'être négligeables, et vont s'annuler avec l'augmentation progressive de . On a alors :

L'équation nous dit que la présence d'une constante cosmologique non-nulle suffit à elle seule pour que le big-rip survienne. Mais dans le cas où elle est nulle, le big rip dépend de la valeur de la courbure. Supposons que la constante cosmologique soit nulle, ce qui donne :

Ce qui se simplifie en :

On voit que le big rip est possible si , mais à condition que la courbure soit négative.

Pour résumer, le big rip a lieu soit si la constante cosmologique est positive, soit si la courbure est négative (et même suffisamment négative pour compenser l'effet de la gravité/densité). Dit autrement, le destin de l'univers dépend uniquement de la valeur de la constante cosmologique et de la courbure.

Le cas du big chill[modifier | modifier le wikicode]

Dans le cas du big chill, le facteur d'échelle tend vers l'infini et sa dérivée tend vers zéro :

.
.

On part de l'équation des sections précédentes :

On combine les deux équations précédentes :

On réorganise :

On ajoute alors la contrainte . Dans ce cas, on a et . On a alors :

Ce qui n'est possible que si la constante cosmologique est nulle, idem pour la courbure. Un univers en big chill ne peut atteindre un volume infini que si sa courbure et sa constante cosmologique sont toutes les deux nulles, en présence de matière et/ou de rayonnement.

Résumé[modifier | modifier le wikicode]

Dans les paragraphes précédents, on sait quel est le destin de l'univers en fonction de son contenu. Tout dépend de la valeur de la constante cosmologique et de sa courbure, la présence de matière et de rayonnement important peu. On peut donc résumer le tout dans un tableau à deux entrées, qui donne le destin de l'univers en fonction du signe de la courbure et de la constante cosmologique.

Nul Positif
Courbure négative Big Rip Big Rip
Courbure nulle Big chill
Courbure positive Big Crunch Dépend de qui l'emporte