Mathc complexes/00i
Apparence
Fonctions matricielles dans C. Matrices Non symétriques conjugués
Installer et compiler ces fichiers dans votre répertoire de travail.
c00a.c |
---|
/* ------------------------------------ */
/* Save as : c00a.c */
/* ------------------------------------ */
#include "w_a.h"
/* ------------------------------------ */
#define FACTOR_E +1.E-0
#define RCA RC3
/* ------------------------------------ */
/* ------------------------------------ */
double **EV_cos2A_mZ(
double **EV,
double **EV_cos2A
)
{
int r;
int c;
nb_Z cos2A;
for ( r=R1; r<EV[R_SIZE][C0]; r++)
for ( c=C1; c<EV[C_SIZE][C0]; c+=C2)
if(((r-R1)*C2)==c-C1)
{
cos2A = cos_Z(i_Z(2.*EV[r][c],2.*EV[r][c+C1]));
EV_cos2A[r][c ] = cos2A.r;
EV_cos2A[r][c+C1] = cos2A.i;
}
return(EV_cos2A);
}
/* ------------------------------------ */
/* ------------------------------------ */
double **EV_TwocosA_2mns1_mZ(
double **EV,
double **EV_TwocosA_2mns1
)
{
int r;
int c;
nb_Z cosa;
nb_Z mns1 = {1,0};
nb_Z TwocosA_2mns1;
for ( r=R1; r<EV[R_SIZE][C0]; r++)
for ( c=C1; c<EV[C_SIZE][C0]; c+=C2)
if(((r-R1)*C2)==c-C1)
{
cosa = cos_Z(i_Z( EV[r][c], EV[r][c+C1]));
TwocosA_2mns1 = sub_Z(smul_Z(2., mul_Z(cosa,cosa)),mns1);
EV_TwocosA_2mns1[r][c ] = TwocosA_2mns1.r;
EV_TwocosA_2mns1[r][c+C1] = TwocosA_2mns1.i;
}
return(EV_TwocosA_2mns1);
}
/* ------------------------------------ */
/* ------------------------------------ */
void fun(void)
{
double **A = i_mZ(RCA,RCA);
double **V = i_mZ(RCA,RCA);
double **invV = i_mZ(RCA,RCA);
double **T = i_mZ(RCA,RCA);
double **EV = i_mZ(RCA,RCA);
double **EV_cos2a = i_mZ(RCA,RCA);
double **EV_TwocosA_2mns1 = i_mZ(RCA,RCA);
double **cos2a = i_mZ(RCA,RCA);
double **TwocosA_2mns1 = i_mZ(RCA,RCA);
do
{
rE_mZ(A,999,+1.E-4);
eigs_V_mZ(A,V,FACTOR_E);
}while(!det_Z(V).r);
clrscrn();
printf(" A :");
p_mZ(A, S9,P4, S8,P4, C3);
printf(" V :");
eigs_V_mZ(A,V,FACTOR_E);
pE_mZ(V, S12,P4, S12,P4, C3);
printf(" inv(V) ... Some time the matrix is not invertible :");
inv_mZ(V,invV);
pE_mZ(invV, S12,P4, S12,P4, C3);
printf(" EV = invV * A * V");
mul_mZ(invV,A,T);
mul_mZ(T,V,EV);
pE_mZ(clean_eyes_mZ(EV), S12,P4, S12,P4, C3);
stop();
clrscrn();
printf(" cos(2*A) :");
EV_cos2A_mZ(EV,EV_cos2a);
mul_mZ(V,EV_cos2a,T);
mul_mZ(T,invV,cos2a);
pE_mZ(cos2a, S12,P4, S8,P4, C3);
printf(" 2cos(A)**2-1 :");
EV_TwocosA_2mns1_mZ(EV,EV_TwocosA_2mns1);
mul_mZ(V,EV_TwocosA_2mns1,T);
mul_mZ(T,invV,TwocosA_2mns1);
pE_mZ(TwocosA_2mns1, S12,P4, S8,P4, C3);
f_mZ(A);
f_mZ(V);
f_mZ(invV);
f_mZ(T);
f_mZ(EV);
f_mZ(EV_cos2a);
f_mZ(cos2a);
f_mZ(EV_TwocosA_2mns1);
f_mZ(TwocosA_2mns1);
}
/* ------------------------------------ */
int main(void)
{
time_t t;
srand(time(&t));
do
{
fun();
} while(stop_w());
return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */
Exemple de sortie écran :
A :
-0.0053 +0.0436i -0.0152 -0.0318i +0.0868 -0.0825i
-0.0896 -0.0125i -0.0159 -0.0123i +0.0366 +0.0760i
+0.0824 -0.0465i +0.0151 -0.0321i -0.0527 +0.0088i
V :
-4.3960e-01 +2.3951e-01i +6.8694e-01 +6.4846e-02i +3.0583e-01 +2.1385e-01i
-2.3624e-01 -5.0902e-01i -4.6066e-01 +2.7664e-01i +1.1715e-01 -8.2464e-01i
+6.5914e-01 +9.1475e-18i +4.8495e-01 +2.6920e-17i +4.0864e-01 +0.0000e+00i
inv(V) ... Some time the matrix is not invertible :
-8.6780e-01 -9.9173e-03i -1.9196e-01 -1.3377e-01i +9.6926e-01 +1.1252e-01i
+5.7631e-01 +2.5119e-02i -1.8518e-01 -5.5564e-01i +7.5620e-01 -5.3481e-01i
+7.1584e-01 -1.3813e-02i +5.2941e-01 +8.7518e-01i -1.3712e-02 +4.5318e-01i
EigsValue = invV * A * V
-1.2096e-01 +6.9597e-02i +0.0000e+00 +0.0000e+00i +0.0000e+00 +0.0000e+00i
+0.0000e+00 +0.0000e+00i +7.4206e-02 -6.9435e-03i +0.0000e+00 +0.0000e+00i
+0.0000e+00 +0.0000e+00i +0.0000e+00 +0.0000e+00i -2.7146e-02 -2.2554e-02i
Press return to continue.
cos(2*A) :
+9.9510e-01+1.6453e-02i +2.3495e-05+7.6329e-03i -2.1934e-03-1.3962e-02i
-1.7612e-02-4.1358e-03i +9.9192e-01-6.8147e-03i +2.2013e-02-1.8179e-03i
+8.2685e-03-1.9280e-02i +7.7511e-03-4.3735e-04i +9.8193e-01+2.3420e-02i
2cos(A)**2-1 :
+9.9510e-01+1.6453e-02i +2.3495e-05+7.6329e-03i -2.1934e-03-1.3962e-02i
-1.7612e-02-4.1358e-03i +9.9192e-01-6.8147e-03i +2.2013e-02-1.8179e-03i
+8.2685e-03-1.9280e-02i +7.7511e-03-4.3735e-04i +9.8193e-01+2.3420e-02i
Press return to continue
Press X return to stop