Mathc complexes/a190
Apparence
Installer et compiler ces fichiers dans votre répertoire de travail.
c00a.c |
---|
/* ------------------------------------ */
/* Save as : c00a.c */
/* ------------------------------------ */
#include "w_a.h"
/* ------------------------------------ */
#define RCA RC3
#define Cb C3
/* ------------------------------------ */
int main(void)
{
double a[RCA*(RCA*C2)] = { 1,2, 3,4, 5,6,
5,4, 1,3, 6,8,
7,2, 5,1, 1,1};
double tb[RCA*(Cb*C2)] = { 1,4, 5,4, 3,1,
2,5, 3,5, 2,3,
3,6, 2,6, 2,4 };
double **A = ca_A_mZ(a, i_mZ(RCA,RCA));
double **b = ca_A_mZ(tb, i_mZ(RCA,Cb));
double **X = i_mZ(RCA,Cb);
double **Ab = i_Abr_Ac_bc_mZ(RCA,RCA,Cb);
c_A_b_Ab_mZ(A,b,Ab);
clrscrn();
printf(" \n");
printf(" Linear systems with common coefficient matrix.\n\n");
printf(" Ax1=b1 \n");
printf(" Ax2=b2 \n");
printf(" ... \n");
printf(" Axn=bn \n\n");
printf(" We can write these equalities in this maner. \n\n");
printf(" A|x1|x2|...|xn| = b1|b2|...|bn| \n\n");
printf(" or simply : \n\n");
printf(" AX = b \n\n");
printf(" where b = b1|b2|...|bn \n\n");
printf(" and X = x1|x2|...|xn \n\n");
stop();
clrscrn();
printf(" We want to find X such as, \n\n");
printf(" AX = b \n\n");
printf(" We can use the function, \n");
printf(" gaussjordan : gj_mZ(Ab); \n\n");
printf(" To verify the result you can \n");
printf(" multiply the matrix A by X. \n");
printf(" You must refind b. \n\n\n");
stop();
clrscrn();
printf(" A :\n");
p_mZ(A, S5,P0, S4,P0, C6);
printf(" b1 b2 ... bn :\n");
p_mZ(b, S5,P0, S4,P0, C6);
stop();
clrscrn();
printf(" gj_mZ(Ab) :");
p_mZ(gj_mZ(Ab), S8,P4, S8,P4, C3);
stop();
clrscrn();
printf(" Ab :");
p_mZ(Ab, S10,P3, S4,P3, C3);
printf(" X :");
p_mZ(c_Ab_b_mZ(Ab,X), S10,P3, S4,P3, C4);
stop();
clrscrn();
clrscrn();
printf(" b1 b2 ... bn :");
p_mZ(b, S5,P0, S3,P0, C6);
printf(" Ax1 Ax2 ... Axn :");
p_mZ(mul_mZ(A,X,b), S5,P0, S3,P0, C6);
f_mZ(Ab);
f_mZ(X);
f_mZ(b);
f_mZ(A);
stop();
return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */
Exemple de sortie écran :
------------------------------------
Linear systems with common coefficient matrix.
Ax1=b1
Ax2=b2
...
Axn=bn
We can write these equalities in this maner.
A|x1|x2|...|xn| = b1|b2|...|bn|
or simply :
AX = b
where b = b1|b2|...|bn
and X = x1|x2|...|xn
Press return to continue.
------------------------------------
We want to find X such as,
AX = b
We can use the function,
gaussjordan : gj_mZ(Ab);
To verify the result you can
multiply the matrix A by X.
You must refind b.
Press return to continue.
------------------------------------
A :
+1 +2i +3 +4i +5 +6i
+5 +4i +1 +3i +6 +8i
+7 +2i +5 +1i +1 +1i
b1 b2 ... bn :
+1 +4i +5 +4i +3 +1i
+2 +5i +3 +5i +2 +3i
+3 +6i +2 +6i +2 +4i
Press return to continue.
------------------------------------
gj1_mZ(Ab) :
+1.0000 +0.0000i +0.0000 -0.0000i +0.0000 +0.0000i
+0.0000 +0.0000i +1.0000 +0.0000i +0.0000 +0.0000i
+0.0000 +0.0000i +0.0000 +0.0000i +1.0000 +0.0000i
+0.3085 +0.3691i -0.2077 +0.6268i +0.0742 +0.5774i
+0.3263 +0.4945i +0.8123 +0.2695i +0.4261 -0.0711i
+0.2212 -0.2204i +0.3918 -0.5240i +0.0867 -0.3474i
Press return to continue.
------------------------------------
gj1_mZ(Ab) :
+1.000+0.000i +0.000-0.000i +0.000+0.000i +0.309+0.369i
+0.000+0.000i +1.000+0.000i +0.000+0.000i +0.326+0.495i
+0.000+0.000i +0.000+0.000i +1.000+0.000i +0.221-0.220i
-0.208+0.627i +0.074+0.577i
+0.812+0.270i +0.426-0.071i
+0.392-0.524i +0.087-0.347i
X :
+0.309+0.369i -0.208+0.627i +0.074+0.577i
+0.326+0.495i +0.812+0.270i +0.426-0.071i
+0.221-0.220i +0.392-0.524i +0.087-0.347i
Press return to continue.
------------------------------------
b1 b2 ... bn :
+1 +4i +5 +4i +3 +1i
+2 +5i +3 +5i +2 +3i
+3 +6i +2 +6i +2 +4i
Ax1 Ax2 ... Axn :
+1 +4i +5 +4i +3 +1i
+2 +5i +3 +5i +2 +3i
+3 +6i +2 +6i +2 +4i
Press return to continue.