Sommaire
Installer ce fichier dans votre répertoire de travail.
fa.h
/* -------------------------------- */ /* save as fa.h */ /* --------------------------------- */ #define LOOP 2*300 /* --------------------------------- */ double s = 2.; /* --------------------------------- */ double F( double t) { return( (1.) ); } char Feq[] = "(1)"; /* --------------------------------- */ double G( double t) { return( (t) ); } char Geq[] = "(t)"; /* --------------------------------- */ double Gt_mns_G0( double t) { return( (t-0) ); } char Gt_mns_G0eq[] = "t-0"; /* --------------------------------- */ /* --------------------------------- Laplace transform of F(t) --------------------------------- */ double f( double s) { return((1./s)); } char feq[] = "(1/s)"; /* --------------------------------- */ double f_s( double s) { return(((1./s)*(1./s))); } char f_seq[] = "(1/s)*(1/s)"; /* ---------------------------------- */ /* ---------------------------------- */ double b = 100.; char beq[] = "100"; double a = 0.; char aeq[] = "0"; /* ---------------------------------- */ /* ---------------------------------- */ char Mathematica_eq[] = "integrate e**(-s*t) * (t-0) dt" " from t=0 to infinity"; /* ---------------------------------- */ /* ---------------------------------- */
fb.h
/* --------------------------------- */ /* save as fb.h */ /* --------------------------------- */ #define LOOP 2*300 /* --------------------------------- */ double s = 1./2.; /* --------------------------------- */ double F( double t) { return( (t) ); } char Feq[] = "(t)"; /* --------------------------------- */ double G( double t) { return( (t*t/2.) ); } char Geq[] = "(t**2/2)"; /* --------------------------------- */ double Gt_mns_G0( double t) { return( (t*t/2.)-(0./2.) ); } char Gt_mns_G0eq[] = "(t**2/2)-(0**2/2)"; /* --------------------------------- */ /* --------------------------------- Laplace transform of F(t) --------------------------------- */ double f( double s) { return((1./(s*s))); } char feq[] = "(1/s^2)"; /* --------------------------------- */ double f_s( double s) { return(((1./s)*(1./(s*s)))); } char f_seq[] = "(1/s)*(1/s^2)"; /* ---------------------------------- */ /* ---------------------------------- */ double b = 100.; char beq[] = "100"; double a = 0.; char aeq[] = "0"; /* ---------------------------------- */ /* ---------------------------------- */ char Mathematica_eq[] = "integrate e**(-s*t)*((t**2/2)-(0**2/2)) dt" " from t=0 to infinity"; /* ---------------------------------- */ /* ---------------------------------- */
fc.h
/* --------------------------------- */ /* save as fc.h */ /* --------------------------------- */ #define LOOP 2*300 /* --------------------------------- */ double s = 1./2.; /* --------------------------------- */ double F( double t) { return( (t*t) ); } char Feq[] = "(t**2)"; /* --------------------------------- */ double G( double t) { return( (t*t*t/3.) ); } char Geq[] = "(t**3/3)"; /* --------------------------------- */ double Gt_mns_G0( double t) { return( (t*t*t/3.)-(0./3.) ); } char Gt_mns_G0eq[] = "(t**3/3)-(0**3/3)"; /* --------------------------------- */ /* --------------------------------- Laplace transform of F(t) --------------------------------- */ double f( double s) { return((2./(s*s*s))); } char feq[] = "(2/s^3)"; /* ---------------------------------- */ double f_s( double s) { return(((1./s)*(2./(s*s*s)))); } char f_seq[] = "(1/s)*(2/s^3)"; /* ---------------------------------- */ /* ---------------------------------- */ double b = 100.; char beq[] = "100"; double a = 0.; char aeq[] = "0"; /* ---------------------------------- */ /* ---------------------------------- */ char Mathematica_eq[] = "integrate e**(-s*t)*((t**3/3)-(0**3/3)) dt" " from t=0 to infinity"; /* ---------------------------------- */ /* ---------------------------------- */
fd.h
/* --------------------------------- */ /* save as fd.h */ /* --------------------------------- */ #define LOOP 2*300 /* --------------------------------- */ double s = 1./2.; /* --------------------------------- */ double F( double t) { return( (t*t*t) ); } char Feq[] = "(t**3)"; /* --------------------------------- */ double G( double t) { return( (t*t*t*t/4.) ); } char Geq[] = "(t**4/4)"; /* --------------------------------- */ double Gt_mns_G0( double t) { return( (t*t*t*t/4.)-(0./4.) ); } char Gt_mns_G0eq[] = "(t**4/4)-(0**4/4)"; /* --------------------------------- */ /* --------------------------------- Laplace transform of F(t) --------------------------------- */ double f( double s) { return((6./(s*s*s*s))); } char feq[] = "(6/s^4)"; /* ---------------------------------- */ double f_s( double s) { return(((1./s)*(6./(s*s*s*s)))); } char f_seq[] = "(1/s)*(6/s^4)"; /* ---------------------------------- */ /* ---------------------------------- */ double b = 100.; char beq[] = "100"; double a = 0.; char aeq[] = "0"; /* ---------------------------------- */ /* ---------------------------------- */ char Mathematica_eq[] = "integrate e**(-s*t)*((t**4/4)-(0**4/4)) dt" " from t=0 to infinity"; /* ---------------------------------- */ /* ---------------------------------- */
fe.h
/* --------------------------------- */ /* save as fe.h */ /* --------------------------------- */ #define LOOP 2*300 /* --------------------------------- */ double s = 1./2.; /* --------------------------------- */ double F( double t) { return( (t*t*t*t) ); } char Feq[] = "(t**4)"; /* --------------------------------- */ double G( double t) { return( (t*t*t*t*t/5.) ); } char Geq[] = "(t**5/5)"; /* --------------------------------- */ double Gt_mns_G0( double t) { return( (t*t*t*t*t/5.)-(0./5.) ); } char Gt_mns_G0eq[] = "(t**5/5)-(0**5/5)"; /* --------------------------------- */ /* --------------------------------- Laplace transform of F(t) --------------------------------- */ double f( double s) { return((24./(s*s*s*s*s))); } char feq[] = "(24/s^5)"; /* ---------------------------------- */ double f_s( double s) { return(((1./s)*(24./(s*s*s*s*s)))); } char f_seq[] = "(1/s)*(24/s^5)"; /* ---------------------------------- */ /* ---------------------------------- */ double b = 100.; char beq[] = "100"; double a = 0.; char aeq[] = "0"; /* ---------------------------------- */ /* ---------------------------------- */ char Mathematica_eq[] = "integrate e**(-s*t)*((t**5/5)-(0**5/5)) dt" " from t=0 to infinity"; /* ---------------------------------- */ /* ---------------------------------- */
ff.h
/* --------------------------------- */ /* save as ff.h */ /* --------------------------------- */ #define LOOP 2*300 /* --------------------------------- */ double s = 1./3.; /* --------------------------------- */ double F( double t) { return( (sin(t)) ); } char Feq[] = "(sin(t))"; /* --------------------------------- */ double G( double t) { return( (-cos(t)) ); } char Geq[] = "(-cos(t))"; /* --------------------------------- */ double Gt_mns_G0( double t) { return( (-cos(t))-(-cos(0)) ); } char Gt_mns_G0eq[] = "(-cos(t))-(-cos(0))"; /* --------------------------------- */ /* --------------------------------- Laplace transform of F(t) --------------------------------- */ double f( double s) { return((1./(s*s+1.))); } char feq[] = "(1/(s^2+1))"; /* ---------------------------------- */ double f_s( double s) { return( ((1./s)*(1./(s*s+1.))) ); } char f_seq[] = "(1/s)*(1/(s^2+1))"; /* ---------------------------------- */ /* ---------------------------------- */ double b = 100.; char beq[] = "100"; double a = 0.; char aeq[] = "0"; /* ---------------------------------- */ /* ---------------------------------- */ char Mathematica_eq[] = "integrate e**(-s*t)*((-cos(t))-(-cos(0))) dt" " from t=0 to infinity"; /* ---------------------------------- */ /* ---------------------------------- */
fg.h
/* --------------------------------- */ /* save as fg.h */ /* --------------------------------- */ #define LOOP 2*300 /* --------------------------------- */ double s = 1./5.; /* --------------------------------- */ double F( double t) { return( (cos(t)) ); } char Feq[] = "(cos(t))"; /* --------------------------------- */ double G( double t) { return( (sin(t)) ); } char Geq[] = "(sin(t))"; /* --------------------------------- */ double Gt_mns_G0( double t) { return( (sin(t))-(sin(0)) ); } char Gt_mns_G0eq[] = "(sin(t))-(sin(0))"; /* --------------------------------- */ /* --------------------------------- Laplace transform of F(t) --------------------------------- */ double f( double s) { return((s/(s*s+1.))); } char feq[] = "(s/(s^2+1))"; /* ---------------------------------- */ double f_s( double s) { return( ((1./s)*(s/(s*s+1.))) ); } char f_seq[] = "(1/s)*(s/(s^2+1))"; /* ---------------------------------- */ /* ---------------------------------- */ double b = 100.; char beq[] = "100"; double a = 0.; char aeq[] = "0"; /* ---------------------------------- */ /* ---------------------------------- */ char Mathematica_eq[] = "integrate e**(-s*t)*((sin(t))-(sin(0))) dt" " from t=0 to infinity"; /* ---------------------------------- */ /* ---------------------------------- */
fh.h
/* --------------------------------- */ /* save as fh.h */ /* --------------------------------- */ #define LOOP 2*300 /* --------------------------------- */ double s = 2.; /* --------------------------------- */ double F( double t) { return( (sinh(t)) ); } char Feq[] = "(sinh(t))"; /* --------------------------------- */ double G( double t) { return( (cosh(t)) ); } char Geq[] = "(cosh(t))"; /* --------------------------------- */ double Gt_mns_G0( double t) { return( (cosh(t))-(cosh(0)) ); } char Gt_mns_G0eq[] = "(cosh(t))-(cosh(0))"; /* --------------------------------- */ /* --------------------------------- Laplace transform of F(t) --------------------------------- */ double f( double s) { return((1/(s*s-1.))); } char feq[] = "(1/(s^2-1))"; /* ---------------------------------- */ double f_s( double s) { return( ((1./s)*(1/(s*s-1.))) ); } char f_seq[] = "(1/s)*(1/(s^2-1))"; /* ---------------------------------- */ /* ---------------------------------- */ double b = 100.; char beq[] = "100"; double a = 0.; char aeq[] = "0"; /* ---------------------------------- */ /* ---------------------------------- */ char Mathematica_eq[] = "integrate e**(-s*t)*((cosh(t))-(cosh(0))) dt" " from t=0 to infinity"; /* ---------------------------------- */ /* ---------------------------------- */
fi.h
/* --------------------------------- */ /* save as fi.h */ /* --------------------------------- */ #define LOOP 2*300 /* --------------------------------- */ double s = 2.; /* --------------------------------- */ double F( double t) { return( (cosh(t)) ); } char Feq[] = "(cosh(t))"; /* --------------------------------- */ double G( double t) { return( (sinh(t)) ); } char Geq[] = "(sinh(t))"; /* --------------------------------- */ double Gt_mns_G0( double t) { return( (sinh(t))-(sinh(0)) ); } char Gt_mns_G0eq[] = "(sinh(t))-(sinh(0))"; /* --------------------------------- */ /* --------------------------------- Laplace transform of F(t) --------------------------------- */ double f( double s) { return((s/(s*s-1.))); } char feq[] = "(s/(s^2-1))"; /* ---------------------------------- */ double f_s( double s) { return( ((1./s)*(s/(s*s-1.))) ); } char f_seq[] = "(1/s)*(s/(s^2-1))"; /* ---------------------------------- */ /* ---------------------------------- */ double b = 100.; char beq[] = "100"; double a = 0.; char aeq[] = "0"; /* ---------------------------------- */ /* ---------------------------------- */ char Mathematica_eq[] = "integrate e**(-s*t)*((sinh(t))-(sinh(0))) dt" " from t=0 to infinity"; /* ---------------------------------- */ /* ---------------------------------- */
fj.h
/* --------------------------------- */ /* save as fj.h */ /* --------------------------------- */ #define LOOP 2*300 /* --------------------------------- */ double s = 2.; /* --------------------------------- */ double F( double t) { return( (exp(t)) ); } char Feq[] = "(exp(t))"; /* --------------------------------- */ double G( double t) { return( (exp(t)) ); } char Geq[] = "(exp(t))"; /* --------------------------------- */ double Gt_mns_G0( double t) { return( (exp(t))-(exp(0)) ); } char Gt_mns_G0eq[] = "(exp(t))-(exp(0))"; /* --------------------------------- */ /* --------------------------------- Laplace transform of F(t) --------------------------------- */ double f( double s) { return((1/(s-1.))); } char feq[] = "(1/(s-1))"; /* ---------------------------------- */ double f_s( double s) { return( ((1./s)*(1/(s-1.))) ); } char f_seq[] = "(1/s)*(1/(s-1))"; /* ---------------------------------- */ /* ---------------------------------- */ double b = 100.; char beq[] = "100"; double a = 0.; char aeq[] = "0"; /* ---------------------------------- */ /* ---------------------------------- */ char Mathematica_eq[] = "integrate e**(-s*t)*((exp(t))-(exp(0))) dt" " from t=0 to infinity"; /* ---------------------------------- */ /* ---------------------------------- */