Aller au contenu

Mathc initiation/a521

Un livre de Wikilivres.


Sommaire


Installer ce fichier dans votre répertoire de travail.

Texte de la légende
fa.h
 
 /* -------------------------------- */
/* save as fa.h                      */
/* --------------------------------- */
#define  LOOP  2*300
/* --------------------------------- */
double  s =  2.;
/* --------------------------------- */
double F(
double t)
{
        return( (1.) );
}
char  Feq[] =  "(1)";
/* --------------------------------- */
double G(
double t)
{
        return( (t) );
}
char  Geq[] =  "(t)";
/* --------------------------------- */
double Gt_mns_G0(
double t)
{
        return(       (t-0) );
}
char  Gt_mns_G0eq[] = "t-0";
/* --------------------------------- */
/* ---------------------------------
   Laplace transform of F(t)
   --------------------------------- */
double f(
double s)
{
         return((1./s));
}
char  feq[] =  "(1/s)";
/* --------------------------------- */
double f_s(
double s)
{
         return(((1./s)*(1./s)));
}
char  f_seq[] =  "(1/s)*(1/s)";
/* ---------------------------------- */
/* ---------------------------------- */
double b = 100.;    char beq[] = "100";
double a =   0.;    char aeq[] =   "0";
/* ---------------------------------- */
/* ---------------------------------- */
char Mathematica_eq[] =  
     "integrate e**(-s*t) * (t-0) dt"
     " from t=0 to infinity";  
/* ---------------------------------- */
/* ---------------------------------- */
fb.h
/* --------------------------------- */
/* save as fb.h                      */
/* --------------------------------- */
#define  LOOP  2*300
/* --------------------------------- */
double  s =  1./2.;
/* --------------------------------- */
double F(
double t)
{
        return( (t) );
}
char  Feq[] =  "(t)";
/* --------------------------------- */
double G(
double t)
{
        return( (t*t/2.) );
}
char  Geq[] =  "(t**2/2)";
/* --------------------------------- */
double Gt_mns_G0(
double t)
{
        return(       (t*t/2.)-(0./2.) );
}
char  Gt_mns_G0eq[] = "(t**2/2)-(0**2/2)";
/* --------------------------------- */
/* ---------------------------------
   Laplace transform of F(t)
   --------------------------------- */
double f(
double s)
{
         return((1./(s*s)));
}
char  feq[] =  "(1/s^2)";
/* --------------------------------- */
double f_s(
double s)
{
         return(((1./s)*(1./(s*s))));
}
char  f_seq[] =  "(1/s)*(1/s^2)";
/* ---------------------------------- */
/* ---------------------------------- */
double b = 100.;    char beq[] = "100";
double a =   0.;    char aeq[] =   "0";
/* ---------------------------------- */
/* ---------------------------------- */
char Mathematica_eq[] =  
     "integrate e**(-s*t)*((t**2/2)-(0**2/2)) dt"
     " from t=0 to infinity";  
/* ---------------------------------- */
/* ---------------------------------- */
fc.h
/* --------------------------------- */
/* save as fc.h                      */
/* --------------------------------- */
#define  LOOP  2*300
/* --------------------------------- */
double  s =  1./2.;
/* --------------------------------- */
double F(
double t)
{
        return( (t*t) );
}
char  Feq[] =  "(t**2)";
/* --------------------------------- */
double G(
double t)
{
        return( (t*t*t/3.) );
}
char  Geq[] =  "(t**3/3)";
/* --------------------------------- */
double Gt_mns_G0(
double t)
{
        return(       (t*t*t/3.)-(0./3.) );
}
char  Gt_mns_G0eq[] = "(t**3/3)-(0**3/3)";
/* --------------------------------- */
/* ---------------------------------
   Laplace transform of F(t)
   --------------------------------- */
double f(
double s)
{
         return((2./(s*s*s)));
}
char  feq[] =  "(2/s^3)";
/* ---------------------------------- */
double f_s(
double s)
{
         return(((1./s)*(2./(s*s*s))));
}
char  f_seq[] =  "(1/s)*(2/s^3)";
/* ---------------------------------- */
/* ---------------------------------- */
double b = 100.;    char beq[] = "100";
double a =   0.;    char aeq[] =   "0";
/* ---------------------------------- */
/* ---------------------------------- */
char Mathematica_eq[] =  
     "integrate e**(-s*t)*((t**3/3)-(0**3/3)) dt"
     " from t=0 to infinity";  
/* ---------------------------------- */
/* ---------------------------------- */
fd.h
/* --------------------------------- */
/* save as fd.h                      */
/* --------------------------------- */
#define  LOOP  2*300
/* --------------------------------- */
double  s =  1./2.;
/* --------------------------------- */
double F(
double t)
{
        return( (t*t*t) );
}
char  Feq[] =  "(t**3)";
/* --------------------------------- */
double G(
double t)
{
        return( (t*t*t*t/4.) );
}
char  Geq[] =  "(t**4/4)";
/* --------------------------------- */
double Gt_mns_G0(
double t)
{
        return(       (t*t*t*t/4.)-(0./4.) );
}
char  Gt_mns_G0eq[] = "(t**4/4)-(0**4/4)";
/* --------------------------------- */
/* ---------------------------------
   Laplace transform of F(t)
   --------------------------------- */
double f(
double s)
{
         return((6./(s*s*s*s)));
}
char  feq[] =  "(6/s^4)";
/* ---------------------------------- */
double f_s(
double s)
{
         return(((1./s)*(6./(s*s*s*s))));
}
char  f_seq[] =  "(1/s)*(6/s^4)";
/* ---------------------------------- */
/* ---------------------------------- */
double b = 100.;    char beq[] = "100";
double a =   0.;    char aeq[] =   "0";
/* ---------------------------------- */
/* ---------------------------------- */
char Mathematica_eq[] =  
     "integrate e**(-s*t)*((t**4/4)-(0**4/4)) dt"
     " from t=0 to infinity";  
/* ---------------------------------- */
/* ---------------------------------- */
fe.h
/* --------------------------------- */
/* save as fe.h                      */
/* --------------------------------- */
#define  LOOP  2*300
/* --------------------------------- */
double  s =  1./2.;
/* --------------------------------- */
double F(
double t)
{
        return( (t*t*t*t) );
}
char  Feq[] =  "(t**4)";
/* --------------------------------- */
double G(
double t)
{
        return( (t*t*t*t*t/5.) );
}
char  Geq[] =  "(t**5/5)";
/* --------------------------------- */
double Gt_mns_G0(
double t)
{
        return(       (t*t*t*t*t/5.)-(0./5.) );
}
char  Gt_mns_G0eq[] = "(t**5/5)-(0**5/5)";
/* --------------------------------- */
/* ---------------------------------
   Laplace transform of F(t)
   --------------------------------- */
double f(
double s)
{
         return((24./(s*s*s*s*s)));
}
char  feq[] =  "(24/s^5)";
/* ---------------------------------- */
double f_s(
double s)
{
         return(((1./s)*(24./(s*s*s*s*s))));
}
char  f_seq[] =  "(1/s)*(24/s^5)";
/* ---------------------------------- */
/* ---------------------------------- */
double b = 100.;    char beq[] = "100";
double a =   0.;    char aeq[] =   "0";
/* ---------------------------------- */
/* ---------------------------------- */
char Mathematica_eq[] =  
     "integrate e**(-s*t)*((t**5/5)-(0**5/5)) dt"
     " from t=0 to infinity";  
/* ---------------------------------- */
/* ---------------------------------- */
ff.h
/* --------------------------------- */
/* save as ff.h                      */
/* --------------------------------- */
#define  LOOP  2*300
/* --------------------------------- */
double  s =  1./3.;
/* --------------------------------- */
double F(
double t)
{
        return( (sin(t)) );
}
char  Feq[] =  "(sin(t))";
/* --------------------------------- */
double G(
double t)
{
        return( (-cos(t)) );
}
char  Geq[] =  "(-cos(t))";
/* --------------------------------- */
double Gt_mns_G0(
double t)
{
        return(       (-cos(t))-(-cos(0)) );
}
char  Gt_mns_G0eq[] = "(-cos(t))-(-cos(0))";
/* --------------------------------- */
/* ---------------------------------
   Laplace transform of F(t)
   --------------------------------- */
double f(
double s)
{
         return((1./(s*s+1.)));
}
char  feq[] =  "(1/(s^2+1))";
/* ---------------------------------- */
double f_s(
double s)
{
      return(  ((1./s)*(1./(s*s+1.)))  );
}
char  f_seq[] =  "(1/s)*(1/(s^2+1))";
/* ---------------------------------- */
/* ---------------------------------- */
double b = 100.;    char beq[] = "100";
double a =   0.;    char aeq[] =   "0";
/* ---------------------------------- */
/* ---------------------------------- */
char Mathematica_eq[] =  
     "integrate e**(-s*t)*((-cos(t))-(-cos(0))) dt"
     " from t=0 to infinity";  
/* ---------------------------------- */
/* ---------------------------------- */
fg.h
/* --------------------------------- */
/* save as fg.h                      */
/* --------------------------------- */
#define  LOOP  2*300
/* --------------------------------- */
double  s =  1./5.;
/* --------------------------------- */
double F(
double t)
{
        return( (cos(t)) );
}
char  Feq[] =  "(cos(t))";
/* --------------------------------- */
double G(
double t)
{
        return( (sin(t)) );
}
char  Geq[] =  "(sin(t))";
/* --------------------------------- */
double Gt_mns_G0(
double t)
{
        return(       (sin(t))-(sin(0)) );
}
char  Gt_mns_G0eq[] = "(sin(t))-(sin(0))";
/* --------------------------------- */
/* ---------------------------------
   Laplace transform of F(t)
   --------------------------------- */
double f(
double s)
{
         return((s/(s*s+1.)));
}
char  feq[] =  "(s/(s^2+1))";
/* ---------------------------------- */
double f_s(
double s)
{
      return(  ((1./s)*(s/(s*s+1.)))  );
}
char  f_seq[] =  "(1/s)*(s/(s^2+1))";
/* ---------------------------------- */
/* ---------------------------------- */
double b = 100.;    char beq[] = "100";
double a =   0.;    char aeq[] =   "0";
/* ---------------------------------- */
/* ---------------------------------- */
char Mathematica_eq[] =  
     "integrate e**(-s*t)*((sin(t))-(sin(0))) dt"
     " from t=0 to infinity";  
/* ---------------------------------- */
/* ---------------------------------- */
fh.h
/* --------------------------------- */
/* save as fh.h                      */
/* --------------------------------- */
#define  LOOP  2*300
/* --------------------------------- */
double  s =  2.;
/* --------------------------------- */
double F(
double t)
{
        return( (sinh(t)) );
}
char  Feq[] =  "(sinh(t))";
/* --------------------------------- */
double G(
double t)
{
        return( (cosh(t)) );
}
char  Geq[] =  "(cosh(t))";
/* --------------------------------- */
double Gt_mns_G0(
double t)
{
        return(       (cosh(t))-(cosh(0)) );
}
char  Gt_mns_G0eq[] = "(cosh(t))-(cosh(0))";
/* --------------------------------- */
/* ---------------------------------
   Laplace transform of F(t)
   --------------------------------- */
double f(
double s)
{
         return((1/(s*s-1.)));
}
char  feq[] =  "(1/(s^2-1))";
/* ---------------------------------- */
double f_s(
double s)
{
      return(  ((1./s)*(1/(s*s-1.)))  );
}
char  f_seq[] =  "(1/s)*(1/(s^2-1))";
/* ---------------------------------- */
/* ---------------------------------- */
double b = 100.;    char beq[] = "100";
double a =   0.;    char aeq[] =   "0";
/* ---------------------------------- */
/* ---------------------------------- */
char Mathematica_eq[] =  
     "integrate e**(-s*t)*((cosh(t))-(cosh(0))) dt"
     " from t=0 to infinity";  
/* ---------------------------------- */
/* ---------------------------------- */
fi.h
 
/* --------------------------------- */
/* save as fi.h                      */
/* --------------------------------- */
#define  LOOP  2*300
/* --------------------------------- */
double  s =  2.;
/* --------------------------------- */
double F(
double t)
{
        return( (cosh(t)) );
}
char  Feq[] =  "(cosh(t))";
/* --------------------------------- */
double G(
double t)
{
        return( (sinh(t)) );
}
char  Geq[] =  "(sinh(t))";
/* --------------------------------- */
double Gt_mns_G0(
double t)
{
        return(       (sinh(t))-(sinh(0)) );
}
char  Gt_mns_G0eq[] = "(sinh(t))-(sinh(0))";
/* --------------------------------- */
/* ---------------------------------
   Laplace transform of F(t)
   --------------------------------- */
double f(
double s)
{
         return((s/(s*s-1.)));
}
char  feq[] =  "(s/(s^2-1))";
/* ---------------------------------- */
double f_s(
double s)
{
      return(  ((1./s)*(s/(s*s-1.)))  );
}
char  f_seq[] =  "(1/s)*(s/(s^2-1))";
/* ---------------------------------- */
/* ---------------------------------- */
double b = 100.;    char beq[] = "100";
double a =   0.;    char aeq[] =   "0";
/* ---------------------------------- */
/* ---------------------------------- */
char Mathematica_eq[] =  
     "integrate e**(-s*t)*((sinh(t))-(sinh(0))) dt"
     " from t=0 to infinity";  
/* ---------------------------------- */
/* ---------------------------------- */
fj.h
/* --------------------------------- */
/* save as fj.h                      */
/* --------------------------------- */
#define  LOOP  2*300
/* --------------------------------- */
double  s =  2.;
/* --------------------------------- */
double F(
double t)
{
        return( (exp(t)) );
}
char  Feq[] =  "(exp(t))";
/* --------------------------------- */
double G(
double t)
{
        return( (exp(t)) );
}
char  Geq[] =  "(exp(t))";
/* --------------------------------- */
double Gt_mns_G0(
double t)
{
        return(       (exp(t))-(exp(0)) );
}
char  Gt_mns_G0eq[] = "(exp(t))-(exp(0))";
/* --------------------------------- */
/* ---------------------------------
   Laplace transform of F(t)
   --------------------------------- */
double f(
double s)
{
         return((1/(s-1.)));
}
char  feq[] =  "(1/(s-1))";
/* ---------------------------------- */
double f_s(
double s)
{
      return(  ((1./s)*(1/(s-1.)))  );
}
char  f_seq[] =  "(1/s)*(1/(s-1))";
/* ---------------------------------- */
/* ---------------------------------- */
double b = 100.;    char beq[] = "100";
double a =   0.;    char aeq[] =   "0";
/* ---------------------------------- */
/* ---------------------------------- */
char Mathematica_eq[] =  
     "integrate e**(-s*t)*((exp(t))-(exp(0))) dt"
     " from t=0 to infinity";  
/* ---------------------------------- */
/* ---------------------------------- */