Sommaire
Installer ce fichier dans votre répertoire de travail.
Texte de la légende
|
|
fb.h
|
/* --------------------------------- */
/* save as fb.h */
/* --------------------------------- */
#define LOOP 2*300
/* --------------------------------- */
double s = .6;
/* --------------------------------- */
double F(
double t)
{
return( (t) );
}
char Feq[] = "t";
/* --------------------------------- */
double tF(
double t)
{
return( (t *t) );
}
char tFeq[] = "t *t";
/* --------------------------------- */
/* ---------------------------------
Laplace transform of F(t)
--------------------------------- */
double f(
double s)
{
return((1./(s*s)));
}
char feq[] = "(1/s^2)";
/* --------------------------------- */
double f_s(
double s)
{
return( -1. *(-2./pow(s,3)) );
}
char f_seq[] = "-1*(-2/s**3)";
char f2seq[] = "2/s**3";
/* ---------------------------------- */
/* ---------------------------------- */
double b = 100.; char beq[] = "100";
double a = 0.; char aeq[] = "0";
/* ---------------------------------- */
/* ---------------------------------- */
char Mathematica_eq[] =
"integrate exp(-s *t) * (t *t) dt"
" from t=0 to infinity";
/* --------------------------------- */
/* --------------------------------- */
|
|
fc.h
|
/* --------------------------------- */
/* save as fc.h */
/* --------------------------------- */
#define LOOP 2*300
/* --------------------------------- */
double s = 1./2.;
/* --------------------------------- */
double F(
double t)
{
return( pow(t,2) );
}
char Feq[] = "t**2";
/* --------------------------------- */
double tF(
double t)
{
return( (t *pow(t,2)) );
}
char tFeq[] = "t *t**2";
/* --------------------------------- */
/* ---------------------------------
Laplace transform of F(t)
--------------------------------- */
double f(
double s)
{
return( 2./pow(s,3));
}
char feq[] = "(2/s^3)";
/* ---------------------------------- */
double f_s(
double s)
{
return( -1. *(-6./pow(s,4)) );
}
char f_seq[] = "-1 *(-6/s^4)";
char f2seq[] = "6/s^4";
/* ---------------------------------- */
/* ---------------------------------- */
double b = 100.; char beq[] = "100";
double a = 0.; char aeq[] = "0";
/* ---------------------------------- */
/* ---------------------------------- */
char Mathematica_eq[] =
"integrate e**(-s*t)*(t *t^2) dt"
" from t=0 to infinity";
/* ---------------------------------- */
/* ---------------------------------- */
|
|
fd.h
|
/* --------------------------------- */
/* save as fd.h */
/* --------------------------------- */
#define LOOP 2*300
/* --------------------------------- */
double s = 1./2.;
/* --------------------------------- */
double F(
double t)
{
return( pow(t,3) );
}
char Feq[] = "t**3";
/* --------------------------------- */
double tF(
double t)
{
return( (t *pow(t,3)) );
}
char tFeq[] = "t *t**3";
/* --------------------------------- */
/* ---------------------------------
Laplace transform of F(t)
--------------------------------- */
double f(
double s)
{
return( 6./pow(s,4));
}
char feq[] = "6/s^4";
/* ---------------------------------- */
double f_s(
double s)
{
return( -1. *(-24./pow(s,5)));
}
char f_seq[] = "-1 *(-24/s^5)";
char f2seq[] = "24/s^5";
/* ---------------------------------- */
/* ---------------------------------- */
double b = 100.; char beq[] = "100";
double a = 0.; char aeq[] = "0";
/* ---------------------------------- */
/* ---------------------------------- */
char Mathematica_eq[] =
"integrate e**(-s*t)*(t *t^3) dt"
" from t=0 to infinity";
/* ---------------------------------- */
/* ---------------------------------- */
|
|
fe.h
|
/* --------------------------------- */
/* save as fe.h */
/* --------------------------------- */
#define LOOP 2*300
/* --------------------------------- */
double s = 1./2.;
/* --------------------------------- */
double F(
double t)
{
return( (pow(t,4)) );
}
char Feq[] = "t**4";
/* --------------------------------- */
double tF(
double t)
{
return( t *(pow(t,4)) );
}
char tFeq[] = "t *t**4";
/* --------------------------------- */
/* ---------------------------------
Laplace transform of F(t)
--------------------------------- */
double f(
double s)
{
return(24./pow(s,5));
}
char feq[] = "(24/s^5)";
/* ---------------------------------- */
double f_s(
double s)
{
return( -1 *(-120/pow(s,6)));
}
char f_seq[] = "-1 *(-120/s^6)";
char f2seq[] = "120/s^6";
/* ---------------------------------- */
/* ---------------------------------- */
double b = 100.; char beq[] = "100";
double a = 0.; char aeq[] = "0";
/* ---------------------------------- */
/* ---------------------------------- */
char Mathematica_eq[] =
"integrate e**(-s*t)*(t *t**4) dt"
" from t=0 to infinity";
/* ---------------------------------- */
/* ---------------------------------- */
|
|
ff.h
|
/* --------------------------------- */
/* save as ff.h */
/* --------------------------------- */
#define LOOP 2*300
/* --------------------------------- */
double s = 1./4.;
/* --------------------------------- */
double F(
double t)
{
return( (sin(t)) );
}
char Feq[] = "sin(t)";
/* --------------------------------- */
double tF(
double t)
{
return( (t *sin(t)) );
}
char tFeq[] = "t *sin(t)";
/* --------------------------------- */
/* ---------------------------------
Laplace transform of F(t)
--------------------------------- */
double f(
double s)
{
return((1./(s*s+1.)));
}
char feq[] = "(1/(s^2+1))";
/* ---------------------------------- */
double f_s(
double s)
{
return( -1 *(-(2*s)/pow(pow(s,2)+1,2)) );
}
char f_seq[] = "-1 -(2 s)/(s^2+1)^2";
char f2seq[] = "(2 s)/(s^2+1)^2";
/* ---------------------------------- */
/* ---------------------------------- */
double b = 100.; char beq[] = "100";
double a = 0.; char aeq[] = "0";
/* ---------------------------------- */
/* ---------------------------------- */
char Mathematica_eq[] =
"integrate e**(-s*t)*(t *sin(t)) dt"
" from t=0 to infinity";
/* ---------------------------------- */
/* ---------------------------------- */
|
|
fg.h
|
/* --------------------------------- */
/* save as fg.h */
/* --------------------------------- */
#define LOOP 2*300
/* --------------------------------- */
double s = 1./4.;
/* --------------------------------- */
double F(
double t)
{
return( (cos(t)) );
}
char Feq[] = "cos(t)";
/* --------------------------------- */
double tF(
double t)
{
return( (t *cos(t)) );
}
char tFeq[] = "t *cos(t)";
/* --------------------------------- */
/* ---------------------------------
Laplace transform of F(t)
--------------------------------- */
double f(
double s)
{
return((s/(pow(s,2)+1.)));
}
char feq[] = "(s/(s^2+1))";
/* ---------------------------------- */
double f_s(
double s)
{
return( -1 *(-(pow(s,2)-1)/pow(pow(s,2)+1,2)) );
}
char f_seq[] = "-1 -(s^2-1)/(s^2+1)^2";
char f2seq[] = "(s^2-1)/(s^2+1)^2";
/* ---------------------------------- */
/* ---------------------------------- */
double b = 100.; char beq[] = "100";
double a = 0.; char aeq[] = "0";
/* ---------------------------------- */
/* ---------------------------------- */
char Mathematica_eq[] =
"integrate e**(-s*t)*(t *cos(t)) dt"
" from t=0 to infinity";
/* ---------------------------------- */
/* ---------------------------------- */
|
|
fh.h
|
/* --------------------------------- */
/* save as fh.h */
/* --------------------------------- */
#define LOOP 2*300
/* --------------------------------- */
double s = 2.;
/* --------------------------------- */
double F(
double t)
{
return( (sinh(t)) );
}
char Feq[] = "sinh(t)";
/* --------------------------------- */
double tF(
double t)
{
return( (t *sinh(t)) );
}
char tFeq[] = "t *sinh(t)";
/* --------------------------------- */
/* ---------------------------------
Laplace transform of F(t)
--------------------------------- */
double f(
double s)
{
return((1/(pow(s,2)-1.)));
}
char feq[] = "(1/(s^2-1))";
/* ---------------------------------- */
double f_s(
double s)
{
return( -1 *(-(2*s)/pow(pow(s,2)-1,2) ) );
}
char f_seq[] = "-1 *(-(2 s)/(s^2-1)^2)";
char f2seq[] = "(2 s)/(s^2-1)^2";
/* ---------------------------------- */
/* ---------------------------------- */
double b = 100.; char beq[] = "100";
double a = 0.; char aeq[] = "0";
/* ---------------------------------- */
/* ---------------------------------- */
char Mathematica_eq[] =
"integrate e**(-s*t)*(t *sinh(t)) dt"
" from t=0 to infinity";
/* ---------------------------------- */
/* ---------------------------------- */
|
|
fi.h
|
/* --------------------------------- */
/* save as fi.h */
/* --------------------------------- */
#define LOOP 2*300
/* --------------------------------- */
double s = 2.;
/* --------------------------------- */
double F(
double t)
{
return( (cosh(t)) );
}
char Feq[] = "cosh(t)";
/* --------------------------------- */
double tF(
double t)
{
return( (t *cosh(t)) );
}
char tFeq[] = "t *cosh(t)";
/* --------------------------------- */
/* ---------------------------------
Laplace transform of F(t)
--------------------------------- */
double f(
double s)
{
return( s/(pow(s,2)-1));
}
char feq[] = "(s/(s^2-1))";
/* ---------------------------------- */
double f_s(
double s)
{
return( -1 *(-(pow(s,2)+1)/pow(pow(s,2)-1,2)) );
}
char f_seq[] = "-1 -(s^2+1)/(s^2-1)^2";
char f2seq[] = "(s^2+1)/(s^2-1)^2";
/* ---------------------------------- */
/* ---------------------------------- */
double b = 100.; char beq[] = "100";
double a = 0.; char aeq[] = "0";
/* ---------------------------------- */
/* ---------------------------------- */
char Mathematica_eq[] =
"integrate e**(-s*t)*(t *cosh(t)) dt"
" from t=0 to infinity";
/* ---------------------------------- */
/* ---------------------------------- */
|
|
fj.h
|
/* --------------------------------- */
/* save as fj.h */
/* --------------------------------- */
#define LOOP 2*300
/* --------------------------------- */
double s = 3.;
/* --------------------------------- */
double F(
double t)
{
return( (exp(t)) );
}
char Feq[] = "exp(t)";
/* --------------------------------- */
double tF(
double t)
{
return( (t *exp(t)) );
}
char tFeq[] = "t *exp(t)";
/* --------------------------------- */
/* ---------------------------------
Laplace transform of F(t)
--------------------------------- */
double f(
double s)
{
return((1/(s-1.)));
}
char feq[] = "1/(s-1)";
/* ---------------------------------- */
double f_s(
double s)
{
return( -1 *(-1/pow(s-1,2)) );
}
char f_seq[] = "-1 (-1/(s-1)^2)";
char f2seq[] = "1/(s-1)^2";
/* ---------------------------------- */
/* ---------------------------------- */
double b = 100.; char beq[] = "100";
double a = 0.; char aeq[] = "0";
/* ---------------------------------- */
/* ---------------------------------- */
char Mathematica_eq[] =
"integrate exp(-s *t) * (t *exp(t)) dt"
" from t=a to infinity";
/* --------------------------------- */
/* ---------------------------------- */
|