Sommaire
Installer ce fichier dans votre répertoire de travail.
Texte de la légende
|
|
fb.h
|
/* --------------------------------- */
/* save as fb.h */
/* --------------------------------- */
#define LOOP 2*300
/* --------------------------------- */
double s = 2.;
/* --------------------------------- */
double F(
double t)
{
return( (t) );
}
char Feq[] = "t";
/* --------------------------------- */
double F_t(
double t)
{
return( (1) );
}
char F_teq[] = "t /t";
/* --------------------------------- */
/* ---------------------------------
Laplace transform of F(t)
--------------------------------- */
double f(
double s)
{
return((1./(s*s)));
}
char feq[] = "(1/s^2)";
/* --------------------------------- */
double f_s(
double s)
{
return( 1/s );
}
char f_seq[] = "1/s";
char f2seq[] = "1/s";
/* ---------------------------------- */
/* ---------------------------------- */
double b = 100.; char beq[] = "100";
double a = 0.; char aeq[] = "0";
/* ---------------------------------- */
/* ---------------------------------- */
char Mathematica_eq[] =
"integrate exp(-s *t) * (t /t) dt"
" from t=0 to infinity";
/* --------------------------------- */
/* --------------------------------- */
|
|
fc.h
|
/* --------------------------------- */
/* save as fc.h */
/* --------------------------------- */
#define LOOP 2*300
/* --------------------------------- */
double s = 1./2.;
/* --------------------------------- */
double F(
double t)
{
return( pow(t,2) );
}
char Feq[] = "t**2";
/* --------------------------------- */
double F_t(
double t)
{
return( t );
}
char F_teq[] = "t**2/t";
/* --------------------------------- */
/* ---------------------------------
Laplace transform of F(t)
--------------------------------- */
double f(
double s)
{
return( 2./pow(s,3));
}
char feq[] = "(2/s^3)";
/* ---------------------------------- */
double f_s(
double s)
{
return( 1/pow(s,2) );
}
char f_seq[] = "1/s^2";
char f2seq[] = "1/s^2";
/* ---------------------------------- */
/* ---------------------------------- */
double b = 100.; char beq[] = "100";
double a = 0.; char aeq[] = "0";
/* ---------------------------------- */
/* ---------------------------------- */
char Mathematica_eq[] =
"integrate e**(-s*t)*(t^2/t) dt"
" from t=0 to infinity";
/* ---------------------------------- */
/* ---------------------------------- */
|
|
fd.h
|
/* --------------------------------- */
/* save as fd.h */
/* --------------------------------- */
#define LOOP 2*300
/* --------------------------------- */
double s = 1./2.;
/* --------------------------------- */
double F(
double t)
{
return( pow(t,3) );
}
char Feq[] = "t**3";
/* --------------------------------- */
double F_t(
double t)
{
return( pow(t,2) );
}
char F_teq[] = "t**3/t";
/* --------------------------------- */
/* ---------------------------------
Laplace transform of F(t)
--------------------------------- */
double f(
double s)
{
return( 6./pow(s,4));
}
char feq[] = "6/s^4";
/* ---------------------------------- */
double f_s(
double s)
{
return( 2./pow(s,3));
}
char f_seq[] = "2/s^3";
char f2seq[] = "2/s^3";
/* ---------------------------------- */
/* ---------------------------------- */
double b = 100.; char beq[] = "100";
double a = 0.; char aeq[] = "0";
/* ---------------------------------- */
/* ---------------------------------- */
char Mathematica_eq[] =
"integrate e**(-s*t)*(t^4/t) dt"
" from t=0 to infinity";
/* ---------------------------------- */
/* ---------------------------------- */
|
|
fe.h
|
/* --------------------------------- */
/* save as fe.h */
/* --------------------------------- */
#define LOOP 2*300
/* --------------------------------- */
double s = 1./2.;
/* --------------------------------- */
double F(
double t)
{
return( (pow(t,4)) );
}
char Feq[] = "t**4";
/* --------------------------------- */
double F_t(
double t)
{
return( pow(t,3) );
}
char F_teq[] = "t**4/t";
/* --------------------------------- */
/* ---------------------------------
Laplace transform of F(t)
--------------------------------- */
double f(
double s)
{
return(24./pow(s,5));
}
char feq[] = "(24/s^5)";
/* ---------------------------------- */
double f_s(
double s)
{
return( 6./pow(s,4));
}
char f_seq[] = "6/s^4";
char f2seq[] = "6/s^4";
/* ---------------------------------- */
/* ---------------------------------- */
double b = 100.; char beq[] = "100";
double a = 0.; char aeq[] = "0";
/* ---------------------------------- */
/* ---------------------------------- */
char Mathematica_eq[] =
"integrate e**(-s*t)*(t**4/t) dt"
" from t=0 to infinity";
/* ---------------------------------- */
/* ---------------------------------- */
|
|