Aller au contenu

Mathc initiation/a561

Un livre de Wikilivres.


Sommaire


Installer et compiler ces fichiers dans votre répertoire de travail.

c00a.c
/* --------------------------------- */
/* save as c00a.c                    */
/* --------------------------------- */
#include "x_afile.h"
#include      "fb.h"                 /* Try  fb.h, fc.h ... fj.h */
/* --------------------------------- */
int main(void)
{
 clrscrn();  
 printf(" The Laplace transform of F(t) is f(s) \n\n" 
        "            / oo                         \n" 
        "           |                             \n" 
        " L{F(t)} = |    exp(-s t) F(t) dt = f(s) \n" 
        "           |                             \n" 
        "           /  0                      \n\n\n");
 
 
 printf(" Divide by t  property of the Laplace transform is :\n\n"
        "                /+oo        \n"
        " L{F(t)/t}  =  |  f(u) du   \n"
        "               /s          \n\n");
 stop();
 
 clrscrn(); 
 printf(" If  F(t) : t-> %s  then  f(s) = %s\n\n", Feq, feq);  
 
 printf(" Then :\n\n"
        "                          /+oo     \n"
        "            L{F(t)/t} =  |  f(u) du\n"
        "                         /s      \n\n"       
        "                      =     %s     \n"
        "                      =     %s   \n\n", f_seq,f2seq);

 printf(" With  s = (%+.3f) \n\n", s);
 
 printf("        /+oo                    \n"
        " Then  |  f(u) du = %s = (%+.3f)\n"
        "       /s                   \n\n\n", f2seq, f_s(s)); 
 
 stop();
 
 return 0;
}
/* --------------------------------- */
/* --------------------------------- */


Exemple de sortie écran :

 The Laplace transform of F(t) is f(s) 

            / oo                         
           |                             
 L{F(t)} = |    exp(-s t) F(t) dt = f(s) 
           |                             
           /  0                      


 Divide by t  property of the Laplace transform is :

                /+oo        
 L{F(t)/t}  =  |  f(u) du   
               /s          

 Press return to continue.


Exemple de sortie écran :

 If  F(t) : t-> t  then  f(s) = (1/s^2)

 Then :

                          /+oo     
            L{F(t)/t} =  |  f(u) du
                         /s      

                      =     1/s     
                      =     1/s   

 With  s = (+2.000) 

        /+oo                    
 Then  |  f(u) du = 1/s = (+0.500)
       /s                   


 Press return to continue.