Aller au contenu

Mathc matrices/a226

Un livre de Wikilivres.


Application


Installer et compiler ces fichiers dans votre répertoire de travail.


c00a.c
/* ------------------------------------ */
/*  Save as :   c00a.c                  */
/* ------------------------------------ */
#include "v_a.h"
/* ------------------------------------ */
void fun(void)
{
double d = 3;
	
double a[R3*C3] = {  5,  d*5 + 2,  3,
                     3,  d*3 + 4,  1,
                     4,  d*4 + 2,  5};       

double a1[R3*C3] = { 5,   + 2,  3,
                     3,   + 4,  1,
                     4,   + 2,  5};               

double a2[R3*C3] ={  5,  5,  3,
                     3,  3,  1,
                     4,  4,  5};  
                                                                          
double **A  = ca_A_mR(a ,i_mR(R3,C3));
double **A1 = ca_A_mR(a1,i_mR(R3,C3));
double **A2 = ca_A_mR(a2,i_mR(R3,C3));

  clrscrn();
  printf(" If C2 a column of A is a linear combination  of\n"
         " (C2 + d*C1), then we can write :           \n\n\n"     
         "           | x1  (y1 + d*x1)  z1|               \n" 
         "  det(A) = | x2  (y2 + d*x2)  z1| =             \n" 
         "           | x3  (y3 + d*x3)  z1|           \n\n\n"
         "        |x1   y1  z1|     | x1  x1  z1|         \n" 
         "        |x2   y2  z2| + d | x2  x2  z2|         \n" 
         "        |x3   y3  z3|     | x3  x3  z3|     \n\n\n"
         " Remark : If C1 == C2 then det(A) = 0       \n\n\n");
  stop();  
  
  clrscrn();
  printf(" With : d = %.0f;        \n\n\n"
         " A              |C1 (d C1 + C2) C3|",d);
  p_mR(A,S3,P0,C6);
  
  printf(" A1 :           |C1 C2 C3)|");
  p_mR(A1,S3,P0,C6);
  
  printf(" A2 :           |C1 C1 C3)|");
  p_mR(A2,S3,P0,C6);
  
  printf(" det_R(A) = %+.0f ="    
         " det_R(A1) + d*det_R(A2)  = %+.0f\n\n\n",
           det_R(A), det_R(A1)+d*det_R(A2));  
           
  stop();

  f_mR(A);
  f_mR(A1); 
  f_mR(A2);  
}
/* ------------------------------------ */
int main(void)
{
  fun();

  return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */




Exemple de sortie écran :
 ------------------------------------
 If C2 a column of A is a linear combination  of
 (C2 + d*C1), then we can write :           


           | x1  (y1 + d*x1)  z1|               
  det(A) = | x2  (y2 + d*x2)  z1| =             
           | x3  (y3 + d*x3)  z1|           


        |x1   y1  z1|     | x1  x1  z1|         
        |x2   y2  z2| + d | x2  x2  z2|         
        |x3   y3  z3|     | x3  x3  z3|     


 Remark : If C1 == C2 then det(A) = 0       


 Press return to continue. 


 ------------------------------------
 With : d = 3;        


 A              |C1 (d C1 + C2) C3|
 +5 +17  +3 
 +3 +13  +1 
 +4 +14  +5 

 A1 :           |C1 C2 C3)|
 +5  +2  +3 
 +3  +4  +1 
 +4  +2  +5 

 A2 :           |C1 C1 C3)|
 +5  +5  +3 
 +3  +3  +1 
 +4  +4  +5 

 det_R(A) = +38 = det_R(A1) + d*det_R(A2)  = +38


 Press return to continue.