Mathc matrices/a43
Apparence
Installer et compiler ces fichiers dans votre répertoire de travail.
c00.c |
---|
/* ------------------------------------ */
/* Save as : c00.c */
/* ------------------------------------ */
#include "v_a.h"
/* ------------------------------------ */
/* ------------------------------------ */
#define RA R4
#define CA C4
#define Cb C2
/* ------------------------------------ */
/* ------------------------------------ */
#define B (1.)
//#define B (2./3.)
/* ------------------------------------ */
/* ------------------------------------ */
int main(void)
{
/*
* Find a value for "B" so that the system is compatible.
*/
double ab[RA*(CA+Cb)]={
// A = x*B + y
-9, +4, +6, -4, -3*B, -2,
+4, +8, -2, -9, +4*B, 1,
-6, +9, +7, +1, -7*B, 2,
-9, +4, +6, -4, -6*B, 0 };
double **Ab = ca_A_mR(ab,i_Abr_Ac_bc_mR(RA,CA,Cb));
double **A = c_Ab_A_mR(Ab,i_mR(RA,CA));
double **b = c_Ab_b_mR(Ab,i_mR(RA,Cb));
clrscrn();
printf(" A :");
p_mR(A,S3,P0,C7);
printf(" b :");
p_mR(b,S3,P0,C7);
printf(" Ab :");
p_mR(Ab,S3,P0,C7);
getchar();
clrscrn();
printf(" Copy/Past into the octave window.\n\n");
p_Octave_mR(Ab,"Ab",P0);
printf("\n rref(Ab,.00000000001)\n\n");
printf(" gj_PP_mR(Ab,YES) :");
gj_PP_mR(Ab,YES);
p_mR(Ab,S8,P4,C7);
stop();
f_mR(Ab);
f_mR(b);
f_mR(A);
return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */
Calculer la valeur de B pour que le système soit compatible. Exemple de sortie écran :
------------------------------------
A :
-9 +4 +6 -4
+4 +8 -2 -9
-6 +9 +7 +1
-9 +4 +6 -4
b :
-3 -2
+4 +1
-7 +2
-6 +0
Ab :
-9 +4 +6 -4 -3 -2
+4 +8 -2 -9 +4 +1
-6 +9 +7 +1 -7 +2
-9 +4 +6 -4 -6 +0
------------------------------------
Copy/Past into the octave window.
Ab=[
-9,+4,+6,-4,-3,-2;
+4,+8,-2,-9,+4,+1;
-6,+9,+7,+1,-7,+2;
-9,+4,+6,-4,-6,+0]
rref(Ab,.00000000001)
gj_PP_mR(Ab,YES) :
+1.0000 +0.0000 +0.0000 +2.5929 -1.2124 +1.0354
+0.0000 +1.0000 +0.0000 -1.3850 +0.4513 -0.0752
+0.0000 +0.0000 +1.0000 +4.1460 -2.6195 +1.2699
+0.0000 +0.0000 +0.0000 +0.0000 -3.0000 +2.0000
Press return to continue.
La dernière ligne donne :
+0.0000 +0.0000 +0.0000 +0.0000 -3.0000 +2.0000 ou bien +0.0000 = -3.0000 +2.0000 en introduisant B +0.0000 = -3.0000 B +2.0000 soit le système -3.0000 B = -2.0000 cela donne B = 2./3.