Mathc matrices/c083b
Apparence
Installer et compiler ces fichiers dans votre répertoire de travail.
c01b.c |
---|
/* ------------------------------------ */
/* Save as : c01b.c */
/* ------------------------------------ */
#include "v_a.h"
/* ------------------------------------ */
void fun(int r)
{
double **A = i_mR(r,r);
double **Inv = i_mR(r,r);
double **B = r_mR(i_mR(r,C6),999.);
double **X = i_mR(r,C6);
double **T = i_mR(r,C6);
do
{
r_mR(A,999.);
printf(".");
}while(!det_R(A));
clrscrn();
printf(" \n");
printf(" Linear systems with common coefficient matrix.\n\n");
printf(" Ax1=b1 \n");
printf(" Ax2=b2 \n");
printf(" ... \n");
printf(" Axn=bn \n\n");
printf(" We can write these equalities in this maner. \n\n");
printf(" A|x1|x2|...|xn| = b1|b2|...|bn| \n\n");
printf(" or simply : \n\n");
printf(" AX = B \n\n");
printf(" where B = b1|b2|...|bn \n\n");
printf(" and X = x1|x2|...|xn \n\n");
getchar();
clrscrn();
printf(" We want to find X such as, \n\n");
printf(" AX = B \n\n");
printf(" If A is a square matrix and, \n\n");
printf(" If A has an inverse matrix, \n\n");
printf(" you can find X by this method\n\n");
printf(" X = inv(A) B \n\n\n");
printf(" To verify the result you can \n\n");
printf(" multiply the matrix A by X. \n\n");
printf(" You must refind B. \n\n");
getchar();
clrscrn();
printf(" A :\n");
p_mR(A,S5,P0,C6);
printf(" b1 b2 ... bn :\n");
p_mR(B,S9,P0,C6);
getchar();
clrscrn();
printf(" inv(A) :\n");
pE_mR(inv_mR(A,Inv),S1,P4,C6);
printf(" X = inv(A) * B :\n\n");
printf(" x1 x2 ... xn\n");
p_mR(mul_mR(Inv,B,X),S9,P4,C6);
getchar();
clrscrn();
printf(" b1 b2 ... bn :\n");
p_mR(B,S9,P0,C6);
printf(" Ax1 Ax2 ... Axn :\n");
p_mR(mul_mR(A,X,T),S9,P0,C6);
f_mR(T);
f_mR(X);
f_mR(B);
f_mR(Inv);
f_mR(A);
}
/* ------------------------------------ */
int main(void)
{
time_t t;
srand(time(&t));
do
{
fun(rp_I(RC5)+RC1);
} while(stop_w());
return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */
Nous résolvons un système d'équations, et nous vérifions les calculs. Exemple de sortie écran :
--------------------------------------
Linear systems with common coefficient matrix.
Ax1=b1
Ax2=b2
...
Axn=bn
We can write these equalities in this maner.
A|x1|x2|...|xn| = b1|b2|...|bn|
or simply :
AX = B
where B = b1|b2|...|bn
and X = x1|x2|...|xn
--------------------------------------
We want to find X such as,
AX = B
If A is a square matrix and,
If A has an inverse matrix,
you can find X by this method
X = inv(A) B
To verify the result you can
multiply the matrix A by X.
You must refind B.
--------------------------------------
A :
+766 -263 -339 +266
+646 +266 +632 -533
+552 -339 +56 -645
+320 -447 -193 +380
b1 b2 ... bn :
+886 -287 +706 +804 +94 -263
-673 -829 -61 +112 +710 +32
+640 +202 -981 -907 -401 +660
-279 +364 +310 -595 +188 +580
--------------------------------------
inv(A) :
+1.0589e-03 +5.0817e-04 -1.1897e-04 -2.3039e-04
+1.4836e-03 +1.6291e-04 -8.9711e-04 -2.3327e-03
-1.7265e-03 +1.3907e-03 -5.3580e-04 +2.2497e-03
-2.3430e-05 +4.7002e-04 -1.2272e-03 +1.2242e-03
X = inv(A) * B :
x1 x2 ... xn
+0.5843 -0.8331 +0.7619 +1.1533 +0.4647 -0.4744
+1.2815 -1.5912 +1.1944 +3.4127 +0.1763 -2.3301
-3.4362 +0.0533 -0.0807 -2.0850 +1.4629 +1.4498
-1.4641 -0.1852 +1.5382 +0.4185 +1.0538 -0.0787
-------------------------------------- Ax = B ?
b1 b2 ... bn :
+886 -287 +706 +804 +94 -263
-673 -829 -61 +112 +710 +32
+640 +202 -981 -907 -401 +660
-279 +364 +310 -595 +188 +580
Ax1 Ax2 ... Axn :
+886 -287 +706 +804 +94 -263
-673 -829 -61 +112 +710 +32
+640 +202 -981 -907 -401 +660
-279 +364 +310 -595 +188 +580
Press return to continue
Press X to stop