Mathc matrices/c184
Apparence
Installer et compiler ces fichiers dans votre répertoire de travail.
c01a.c |
---|
/* ------------------------------------ */
/* Save as : c01a.c */
/* ------------------------------------ */
#include "v_a.h"
/* ------------------------------------ */
#define RA R3
#define CA C3
#define Cb C1
/* ------------------------------------ */
int main(void)
{
double a[RA*CA] ={ 4,2,3,
5,3,1,
8,2,2};
double b[RA*Cb] ={ 3,
2,
1};
double **A = ca_A_mR(a,i_mR(RA,CA));
double **B = ca_A_mR(b,i_mR(RA,Cb));
double **Inv = i_mR(RA,CA);
double **X = i_mR(RA,Cb);
double **T = i_mR(RA,Cb);
clrscrn();
printf(" We want to find X such as, \n\n");
printf(" AX = B \n\n");
printf(" If A is a square matrix and, \n\n");
printf(" If A has an inverse matrix, \n\n");
printf(" you can find X by this method\n\n");
printf(" X = inv(A) B \n\n\n");
printf(" To verify the result you can \n\n");
printf(" multiply the matrix A by X. \n\n");
printf(" You must refind B. \n\n");
getchar();
clrscrn();
printf(" A :\n");
p_mR(A,S5,P0,C7);
printf(" B :\n");
p_mR(B,S5,P0,C7);
getchar();
clrscrn();
printf(" inv(A) :\n");
pE_mR(inv_mR(A,Inv),S1,P3,C7);
printf(" X = inv(A) * B :\n");
p_mR(mul_mR(Inv,B,X),S13,P4,C7);
getchar();
clrscrn();
printf(" B :\n");
p_mR(B,S5,P0,C7);
printf(" AX :\n");
p_mR(mul_mR(A,X,T),S5,P0,C7);
f_mR(T);
f_mR(X);
f_mR(B);
f_mR(Inv);
f_mR(A);
return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */
Exemple de sortie écran :
--------------------------------------
We want to find X such as,
AX = B
If A is a square matrix and,
If A has an inverse matrix,
you can find X by this method
X = inv(A) B
To verify the result you can
multiply the matrix A by X.
You must refind B.
--------------------------------------
A :
+4 +2 +3
+5 +3 +1
+8 +2 +2
B :
+3
+2
+1
--------------------------------------
inv(A) :
-1.333e-01 -6.667e-02 +2.333e-01
+6.667e-02 +5.333e-01 -3.667e-01
+4.667e-01 -2.667e-01 -6.667e-02
X = inv(A) * B :
-0.3000
+0.9000
+0.8000
--------------------------------------
B :
+3
+2
+1
AX :
+3
+2
+1
Press return to continue.