Mathc matrices/c22v
Apparence
Sommaire ◀ Utilise la commande "Retour en Arrière" de ton navigateur.
Installer et compiler ces fichiers dans votre répertoire de travail.
c00e.c |
---|
/* ------------------------------------ */
/* Save as : c00e.c */
/* ------------------------------------ */
#include "v_a.h"
/* ------------------------------------ */
/* ------------------------------------ */
#define RA R5
#define CA C3
#define Cb C1
/* ------------------------------------ */
/* ------------------------------------ */
void fun(void)
{
double ab[RA*(CA+Cb)]={
/* x**0 x**1 x**2 y */
1, .1, .01, -0.19,
1, .2, .04, 0.32,
1, .3, .09, 1.04,
1, .4, .16, 2.47,
1, .5, .25, 3.74,
};
double **Ab = ca_A_mR(ab,i_Abr_Ac_bc_mR(RA,CA,Cb));
double **A = c_Ab_A_mR(Ab,i_mR(RA,CA));
double **b = c_Ab_b_mR(Ab,i_mR(RA,Cb));
double **Q = i_mR(RA,CA);
double **R = i_mR(CA,CA);
double **invR = i_mR(CA,CA);
double **Q_T = i_mR(CA,RA);
double **invR_Q_T = i_mR(CA,RA);
double **x = i_mR(CA,Cb); // x invR * Q_T * b
clrscrn();
printf(" Fitting a Quadratic Curve to Data :\n\n");
printf(" A :");
p_mR(A,S5,P2,C7);
printf(" b :");
p_mR(b,S5,P2,C7);
printf(" Ab :");
p_mR(Ab,S5,P2,C7);
stop();
clrscrn();
QR_mR(A,Q,R);
printf(" Q :");
p_mR(Q,S3,P4,C6);
printf(" R :");
p_mR(R,S10,P4,C6);
stop();
clrscrn();
transpose_mR(Q,Q_T);
printf(" Q_T :");
pE_mR(Q_T,S3,P4,C6);
inv_mR(R,invR);
printf(" invR :");
pE_mR(invR,S10,P4,C6);
stop();
clrscrn();
printf(" Solving this system yields a unique\n"
" least squares solution, namely \n\n");
mul_mR(invR,Q_T,invR_Q_T);
mul_mR(invR_Q_T,b,x);
printf(" x = invR * Q_T * b :");
p_mR(x,S10,P2,C6);
printf(" The Quadratic Curve to Data : \n\n"
" s = %+.2f %+.2f*t %+.2f*t**2\n\n"
,x[R1][C1],x[R2][C1],x[R3][C1]);
stop();
f_mR(A);
f_mR(b);
f_mR(Ab);
f_mR(Q);
f_mR(Q_T);
f_mR(R);
f_mR(invR);
f_mR(invR_Q_T);
f_mR(x);
}
/* ------------------------------------ */
int main(void)
{
fun();
return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */
Trouver la meilleur équation du second degré, qui s'ajuste au mieux aux points donnés
Exemple de sortie écran :
-----------------------------------
Fitting a Quadratic Curve to Data :
A :
+1.00 +0.10 +0.01
+1.00 +0.20 +0.04
+1.00 +0.30 +0.09
+1.00 +0.40 +0.16
+1.00 +0.50 +0.25
b :
-0.19
+0.32
+1.04
+2.47
+3.74
Ab :
+1.00 +0.10 +0.01 -0.19
+1.00 +0.20 +0.04 +0.32
+1.00 +0.30 +0.09 +1.04
+1.00 +0.40 +0.16 +2.47
+1.00 +0.50 +0.25 +3.74
Press return to continue.
-----------------------------------
Q :
+0.4472 -0.6325 +0.5345
+0.4472 -0.3162 -0.2673
+0.4472 +0.0000 -0.5345
+0.4472 +0.3162 -0.2673
+0.4472 +0.6325 +0.5345
R :
+2.2361 +0.6708 +0.2460
+0.0000 +0.3162 +0.1897
-0.0000 -0.0000 +0.0374
Press return to continue.
-----------------------------------
Q_T :
+4.4721e-01 +4.4721e-01 +4.4721e-01 +4.4721e-01 +4.4721e-01
-6.3246e-01 -3.1623e-01 +0.0000e+00 +3.1623e-01 +6.3246e-01
+5.3452e-01 -2.6726e-01 -5.3452e-01 -2.6726e-01 +5.3452e-01
invR :
+4.4721e-01 -9.4868e-01 +1.8708e+00
+0.0000e+00 +3.1623e+00 -1.6036e+01
-0.0000e+00 -0.0000e+00 +2.6726e+01
Press return to continue.
-----------------------------------
Solving this system yields a unique
least squares solution, namely
x = invR * Q_T * b :
-0.41
+0.45
+15.93
The Quadratic Curve to Data :
s = -0.41 +0.45*t +15.93*t**2