Mathc matrices/c22w
Apparence
Sommaire ◀ Utilise la commande "Retour en Arrière" de ton navigateur.
Installer et compiler ces fichiers dans votre répertoire de travail.
c00f.c |
---|
/* ------------------------------------ */
/* Save as : c00f.c */
/* ------------------------------------ */
#include "v_a.h"
/* ------------------------------------ */
/* ------------------------------------ */
#define RA R5
#define CA C3
#define Cb C1
/* ------------------------------------ */
/* ------------------------------------ */
void fun(void)
{
double ab[RA*(CA+Cb)]={
/* x**0 x**1 x**2 y */
1, .1, .01, -0.19,
1, .2, .04, 0.32,
1, .3, .09, 1.04,
1, .4, .16, 2.47,
1, .5, .25, 3.74,
};
double **Ab = ca_A_mR(ab,i_Abr_Ac_bc_mR(RA,CA,Cb));
double **A = c_Ab_A_mR(Ab,i_mR(RA,CA));
double **b = c_Ab_b_mR(Ab,i_mR(RA,Cb));
double **A_T = i_mR(CA,RA);
double **A_TA = i_mR(CA,CA); // A_T*A
double **invA_TA = i_mR(CA,CA); // inv(A_T*A)
double **invA_TAA_T = i_mR(CA,RA); // inv(A_T*A)*A_T
double **x = i_mR(CA,Cb); // x = inv(A_T*A)*A_T*b
clrscrn();
printf(" Fitting a Quadratic Curve to Data :\n\n");
printf(" A :");
p_mR(A,S5,P2,C7);
printf(" b :");
p_mR(b,S5,P2,C7);
printf(" Ab :");
p_mR(Ab,S5,P2,C7);
stop();
clrscrn();
printf(" A_T :");
p_mR(transpose_mR(A,A_T),S5,P2,C7);
printf(" A_TA :");
p_mR(mul_mR(A_T,A,A_TA),S5,P2,C7);
printf(" inv(A_TA) :");
p_mR(inv_mR(A_TA,invA_TA),S5,P4,C7);
printf(" inv(A_TA)*A_T :");
p_mR(mul_mR(invA_TA,A_T,invA_TAA_T),S5,P4,C7);
printf("\n x = inv(A_TA)*A_T*b :");
p_mR(mul_mR(invA_TAA_T,b,x),S5,P4,C7);
stop();
clrscrn();
printf("\n x = inv(A_TA)*A_T*b :");
p_mR(x,S5,P2,C7);
printf(" The Quadratic Curve to Data : \n\n:"
" s = %+.2f %+.2f*t %+.2f*t**2\n\n"
,x[R1][C1],x[R2][C1],x[R3][C1]);
stop();
f_mR(A);
f_mR(b);
f_mR(Ab);
f_mR(A_T);
f_mR(A_TA); // A_T*A
f_mR(invA_TA); // inv(A_T*A)
f_mR(invA_TAA_T); // inv(A_T*A)*A_T
f_mR(x);
}
/* ------------------------------------ */
int main(void)
{
fun();
return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */
Trouver la meilleur équation du second degré qui s'ajuste au mieux aux points donnés
Exemple de sortie écran :
-----------------------------------
Fitting a Quadratic Curve to Data :
A :
+1.00 +0.10 +0.01
+1.00 +0.20 +0.04
+1.00 +0.30 +0.09
+1.00 +0.40 +0.16
+1.00 +0.50 +0.25
b :
-0.19
+0.32
+1.04
+2.47
+3.74
Ab :
+1.00 +0.10 +0.01 -0.19
+1.00 +0.20 +0.04 +0.32
+1.00 +0.30 +0.09 +1.04
+1.00 +0.40 +0.16 +2.47
+1.00 +0.50 +0.25 +3.74
Press return to continue.
-----------------------------------
A_T :
+1.00 +1.00 +1.00 +1.00 +1.00
+0.10 +0.20 +0.30 +0.40 +0.50
+0.01 +0.04 +0.09 +0.16 +0.25
A_TA :
+5.00 +1.50 +0.55
+1.50 +0.55 +0.23
+0.55 +0.23 +0.10
inv(A_TA) :
+4.6000 -33.0000 +50.0000
-33.0000 +267.1429 -428.5714
+50.0000 -428.5714 +714.2857
inv(A_TA)*A_T :
+1.8000 +0.0000 -0.8000 -0.6000 +0.6000
-10.5714 +3.2857 +8.5714 +5.2857 -6.5714
+14.2857 -7.1429 -14.2857 -7.1429 +14.2857
x = inv(A_TA)*A_T*b :
-0.4120
+0.4529
+15.9286
Press return to continue.
-----------------------------------
x = inv(A_TA)*A_T*b :
-0.41
+0.45
+15.93
The Quadratic Curve to Data :
s = -0.41 +0.45*t +15.93*t**2
Press return to continue.