Mathc matrices/c22x
Apparence
Sommaire ◀ Utilise la commande "Retour en Arrière" de ton navigateur.
Installer et compiler ces fichiers dans votre répertoire de travail.
c00g.c |
---|
/* ------------------------------------ */
/* Save as : c00g.c */
/* ------------------------------------ */
#include "v_a.h"
/* ------------------------------------ */
/* ------------------------------------ */
#define RA R5
#define CA C2
#define Cb C1
/* ------------------------------------ */
/* ------------------------------------ */
void fun(void)
{
double ab[RA*(CA+Cb)]={
/* x**0 x**1 y */
1, 5.1, 0.19,
1, 5.3, 0.32,
1, 5.5, 1.04,
1, 5.7, 2.47,
1, 6.0, 3.74,
};
double **Ab = ca_A_mR(ab,i_Abr_Ac_bc_mR(RA,CA,Cb));
double **A = c_Ab_A_mR(Ab,i_mR(RA,CA));
double **b = c_Ab_b_mR(Ab,i_mR(RA,Cb));
double **Q = i_mR(RA,CA);
double **R = i_mR(CA,CA);
double **invR = i_mR(CA,CA);
double **Q_T = i_mR(CA,RA);
double **invR_Q_T = i_mR(CA,RA);
double **x = i_mR(CA,Cb); // x invR * Q_T * b
clrscrn();
printf(" Fitting a linear Curve to Data :\n\n");
printf(" A :");
p_mR(A,S5,P2,C7);
printf(" b :");
p_mR(b,S5,P2,C7);
printf(" Ab :");
p_mR(Ab,S5,P2,C7);
stop();
clrscrn();
QR_mR(A,Q,R);
printf(" Q :");
p_mR(Q,S3,P4,C6);
printf(" R :");
p_mR(R,S10,P4,C6);
stop();
clrscrn();
transpose_mR(Q,Q_T);
printf(" Q_T :");
pE_mR(Q_T,S3,P4,C6);
inv_mR(R,invR);
printf(" invR :");
pE_mR(invR,S10,P4,C6);
stop();
clrscrn();
printf(" Solving this system yields a unique\n"
" least squares solution, namely \n\n");
mul_mR(invR,Q_T,invR_Q_T);
mul_mR(invR_Q_T,b,x);
printf(" x = invR * Q_T * b :");
p_mR(x,S10,P2,C6);
printf(" The linear Curve to Data : \n\n"
" s = %+.2f %+.2f*t \n\n"
,x[R1][C1],x[R2][C1]);
stop();
f_mR(A);
f_mR(b);
f_mR(Ab);
f_mR(Q);
f_mR(Q_T);
f_mR(R);
f_mR(invR);
f_mR(invR_Q_T);
f_mR(x);
}
/* ------------------------------------ */
int main(void)
{
fun();
return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */
Trouver la meilleur équation linéaire qui s'ajuste au mieux aux points donnés
Exemple de sortie écran :
-----------------------------------
Fitting a linear Curve to Data :
A :
+1.00 +5.10
+1.00 +5.30
+1.00 +5.50
+1.00 +5.70
+1.00 +6.00
b :
+0.19
+0.32
+1.04
+2.47
+3.74
Ab :
+1.00 +5.10 +0.19
+1.00 +5.30 +0.32
+1.00 +5.50 +1.04
+1.00 +5.70 +2.47
+1.00 +6.00 +3.74
Press return to continue.
-----------------------------------
Q :
+0.4472 -0.6012
+0.4472 -0.3149
+0.4472 -0.0286
+0.4472 +0.2577
+0.4472 +0.6871
R :
+2.2361 +12.3431
+0.0000 +0.6986
Press return to continue.
-----------------------------------
Q_T :
+4.4721e-01 +4.4721e-01 +4.4721e-01 +4.4721e-01 +4.4721e-01
-6.0123e-01 -3.1493e-01 -2.8630e-02 +2.5767e-01 +6.8712e-01
invR :
+4.4721e-01 -7.9019e+00
-0.0000e+00 +1.4315e+00
Press return to continue.
-----------------------------------
Solving this system yields a unique
least squares solution, namely
x = invR * Q_T * b :
-21.85
+4.24
The linear Curve to Data :
s = -21.85 +4.24*t