Aller au contenu

Mathc matrices/c23q

Un livre de Wikilivres.


SommaireUtilise la commande "Retour en Arrière" de ton navigateur.


Installer et compiler ces fichiers dans votre répertoire de travail.


c00s.c
/* ------------------------------------ */
/*  Save as :   c00s.c                  */
/* ------------------------------------ */
#include "v_a.h"
/* ------------------------------------ */
/* ------------------------------------ */
#define   RA R5
#define   CA C5
#define   Cb C1 
/* ------------------------------------ */
/* ------------------------------------ */
void fun(void)
{
double xy[6] ={
   1,     -2,
   2,     -3,
   3,      6    };

   
double ab[RA*(CA+Cb)]={
/* x**2     y**2     x        y        e    =   0   */
  +1.00,   +0.00,   +0.00,   +0.00,   +0.00,   +1.00, 
  +0.00,   +1.00,   +0.00,   +0.00,   +0.00,   +1.00, 
  +1.00,   +4.00,   +1.00,   -2.00,   +1.00,   +0.00, 
  +4.00,   +9.00,   +2.00,   -3.00,   +1.00,   +0.00, 
  +9.00,  +36.00,   +3.00,   +6.00,   +1.00,   +0.00, 
};

double **XY = ca_A_mR(xy,i_mR(R3,C2));

double **Ab = ca_A_mR(ab,i_Abr_Ac_bc_mR(RA,CA,Cb));
double **A  = c_Ab_A_mR(Ab,i_mR(RA,CA));
double **b  = c_Ab_b_mR(Ab,i_mR(RA,Cb));

double **A_T        = i_mR(CA,RA);
double **A_TA       = i_mR(CA,CA); //         A_T*A
double **invA_TA    = i_mR(CA,CA); //     inv(A_T*A)
double **invA_TAA_T = i_mR(CA,RA); //     inv(A_T*A)*A_T

double **x          = i_mR(CA,Cb); // x = inv(A_T*A)*A_T*b

  clrscrn();
  printf("\n");
  printf(" Find the coefficients a, b, c, d,  of a circle  \n\n");
  printf("     ax**2 + ay**2 + bx + cy + d  = 0            \n\n");
  printf(" that passes through these three XY.         \n\n");
  printf("    x     y");
  p_mR(XY,S5,P0,C6);
  printf("\n");
  printf(" Using the given XY, we obtain this matrix.\n");
  printf("  (a = 1. This is my choice)\n\n");
  printf("   x**2    y**2    x       y      ");
  p_mR(Ab,S7,P2,C6);
  stop();

  
  clrscrn();
  printf(" A_T :");
  p_mR(transpose_mR(A,A_T),S10,P2,C7);
  printf(" A_TA :");
  p_mR(mul_mR(A_T,A,A_TA),S10,P2,C7);
  stop();
  
  clrscrn();
  printf(" inv(A_TA) :");
  p_mR(inv_mR(A_TA,invA_TA),S10,P4,C7);  
  printf(" inv(A_TA)*A_T :");
  p_mR(mul_mR(invA_TA,A_T,invA_TAA_T),S10,P4,C7);
  printf("\n x = inv(A_TA)*A_T*b :");
  p_mR(mul_mR(invA_TAA_T,b,x),S10,P4,C7);
  stop();
  
  clrscrn();
  printf("\n x = inv(A_TA)*A_T*b :");
  p_mR(x,S10,P2,C7); 
  printf(" The coefficients a, b, c, d, e, of the curve are : \n\n"
         "  %+.2fx**2 %+.2fy**2 %+.2fx %+.2fy %+.2f = 0\n\n"
            ,x[R1][C1],x[R2][C1],x[R3][C1],x[R4][C1],x[R5][C1]);        
  stop();  

  f_mR(XY);  
  f_mR(A);
  f_mR(b);
  f_mR(Ab);

  f_mR(A_T);
  f_mR(A_TA);       //         A_T*A
  f_mR(invA_TA);    //     inv(A_T*A)
  f_mR(invA_TAA_T); //     inv(A_T*A)*A_T
    
  f_mR(x); 
}
/* ------------------------------------ */
int main(void)
{
	
  fun();

  return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */


 Calculons les coefficients a, b, c, d d'un cercle,
      
      ax**2 + ay**2 + bx + cy + d  = 0 
       Qui passe par ces trois points.    
         
      (x[1],y[1])  (x[2],y[2])  (x[3],y[3])  
 En utilisant ces trois points nous avons cette matrice.
 (a)x**2   (a)y**2   (b)x      (c)y        (d) = 0               
    x[1]**2   y[1]**2   x[1]      y[1]      1    0
    x[2]**2   y[2]**2   x[2]      y[2]      1    0
    x[3]**2   y[3]**2   x[3]      y[3]      1    0
 Ce système a trois lignes et quatre inconnues.
 Il est homogène, donc il a une infinité de solution.
 Pour trouver une solution j'ai choisi que a = 1.
 Nous obtenons cette matrice.
 (a)x**2   (a)y**2
             
    1         0         0         0         0    1  
    0         1         0         0         0    1 
    x[1]**2   y[1]**2   x[1]      y[1]      1    0 
    x[2]**2   y[2]**2   x[2]      y[2]      1    0 
    x[3]**2   y[3]**2   x[3]      y[3]      1    0 


Il suffit de resoudre le système.


Exemple de sortie écran :
  -----------------------------------
 Find the coefficients a, b, c, d,  of a circle  

     ax**2 + ay**2 + bx + cy + d  = 0            

 that passes through these three XY.         

    x     y
   +1    -2 
   +2    -3 
   +3    +6 


 Using the given XY, we obtain this matrix.
  (a = 1. This is my choice)

   x**2    y**2    x       y      
  +1.00   +0.00   +0.00   +0.00   +0.00   +1.00 
  +0.00   +1.00   +0.00   +0.00   +0.00   +1.00 
  +1.00   +4.00   +1.00   -2.00   +1.00   +0.00 
  +4.00   +9.00   +2.00   -3.00   +1.00   +0.00 
  +9.00  +36.00   +3.00   +6.00   +1.00   +0.00 

 Press return to continue. 


  -----------------------------------
 A_T :
     +1.00      +0.00      +1.00      +4.00      +9.00 
     +0.00      +1.00      +4.00      +9.00     +36.00 
     +0.00      +0.00      +1.00      +2.00      +3.00 
     +0.00      +0.00      -2.00      -3.00      +6.00 
     +0.00      +0.00      +1.00      +1.00      +1.00 

 A_TA :
    +99.00    +364.00     +36.00     +40.00     +14.00 
   +364.00   +1394.00    +130.00    +181.00     +49.00 
    +36.00    +130.00     +14.00     +10.00      +6.00 
    +40.00    +181.00     +10.00     +49.00      +1.00 
    +14.00     +49.00      +6.00      +1.00      +3.00 

 Press return to continue. 


  -----------------------------------
 inv(A_TA) :
   +1.0000    -0.0000    -3.2000    -0.2000    +1.8000 
   -0.0000    +1.0000    -7.2000    -2.2000    -1.2000 
   -3.2000    -7.2000   +63.5400   +16.2400    +0.0400 
   -0.2000    -2.2000   +16.2400    +4.9400    +2.7400 
   +1.8000    -1.2000    +0.0400    +2.7400   +10.5400 

 inv(A_TA)*A_T :
   +1.0000    +0.0000    -0.0000    -0.0000    -0.0000 
   +0.0000    +1.0000    -0.0000    -0.0000    -0.0000 
   -3.2000    -7.2000    -0.9000    +0.8000    +0.1000 
   -0.2000    -2.2000    +0.1000    -0.2000    +0.1000 
   +1.8000    -1.2000    +2.1000    -1.2000    +0.1000 


 x = inv(A_TA)*A_T*b :
   +1.0000 
   +1.0000 
  -10.4000 
   -2.4000 
   +0.6000 

 Press return to continue. 


  -----------------------------------
 x = inv(A_TA)*A_T*b :
     +1.00 
     +1.00 
    -10.40 
     -2.40 
     +0.60 

 The coefficients a, b, c, d, e, of the curve are : 

  +1.00x**2 +1.00y**2 -10.40x -2.40y +0.60 = 0

 Press return to continue.