Mathc matrices/c25o
Apparence
Sommaire ◀ Utilise la commande "Retour en Arrière" de ton navigateur.
Installer et compiler ces fichiers dans votre répertoire de travail.
c01g.c |
---|
/* ------------------------------------ */
/* Save as : c01g.c */
/* ------------------------------------ */
#include "v_a.h"
/* ------------------------------------ */
/* ------------------------------------ */
#define RA R5
#define CA C5
/* ------------------------------------ */
#define FACTOR_E +1.E-0
/* ------------------------------------ */
void fun(void)
{
double xy[8] ={
1, 0,
2, 3,
3, 4,
4, 0 };
double tA[RA*CA]={
/* x**2 y**2 x y e */
+1.00, +0.00, +0.00, +0.00, +0.00,
+1.00, +0.00, +1.00, +0.00, +1.00,
+4.00, +9.00, +2.00, +3.00, +1.00,
+9.00, +16.00, +3.00, +4.00, +1.00,
+16.00, +0.00, +4.00, +0.00, +1.00
};
double tb[RA*C1]={
/* = 0 */
+1.00,
+0.00,
+0.00,
+0.00,
+0.00,
};
double **XY = ca_A_mR(xy,i_mR(RA,C2));
double **A = ca_A_mR(tA,i_mR(RA,CA));
double **b = ca_A_mR(tb,i_mR(RA,C1));
double **Pinv = i_mR(CA,RA);
double **Pinvb = i_mR(CA,C1);
clrscrn();
printf("\n");
printf(" Find the coefficients a, b, c, d, e, of the curve \n\n");
printf(" ax**2 + by**2 + cx + dy + e = 0 \n\n");
printf(" that passes through these four points.\n\n");
printf(" x y");
p_mR(XY,S10,P0,C6);
stop();
clrscrn();
printf(" Using the given points, we obtain this matrix.\n");
printf(" (a = 1. This is my choice)\n\n");
printf(" A :");
p_mR(A,S10,P2,C7);
printf(" b :");
p_mR(b,S10,P2,C7);
printf(" Pinv = V * invS_T * U_T ");
pseudo_Rn_mR(A,Pinv,FACTOR_E);
pE_mR(Pinv,S12,P4,C10);
stop();
clrscrn();
printf(" Solving this system yields a unique\n"
" least squares solution, namely \n\n");
printf(" x = Pinv * b ");
mul_mR(Pinv,b,Pinvb);
p_mR(Pinvb,S10,P4,C10);
printf(" The coefficients a, b, c, d, e, of the curve are : \n\n"
" %+.2fx**2 %+.2fy**2 %+.2fx %+.2fy %+.2f = 0\n\n"
,Pinvb[R1][C1],Pinvb[R2][C1],Pinvb[R3][C1],
Pinvb[R4][C1],Pinvb[R5][C1]);
stop();
f_mR(XY);
f_mR(b);
f_mR(A);
f_mR(Pinv);
f_mR(Pinvb);
}
/* ------------------------------------ */
int main(void)
{
fun();
return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */
Exemple de sortie écran :
-----------------------------------
Find the coefficients a, b, c, d, e, of the curve
ax**2 + by**2 + cx + dy + e = 0
that passes through these four points.
x y
+1 +0
+2 +3
+3 +4
+4 +0
+1 +0
Press return to continue.
-----------------------------------
Using the given points, we obtain this matrix.
(a = 1. This is my choice)
A :
+1.00 +0.00 +0.00 +0.00 +0.00
+1.00 +0.00 +1.00 +0.00 +1.00
+4.00 +9.00 +2.00 +3.00 +1.00
+9.00 +16.00 +3.00 +4.00 +1.00
+16.00 +0.00 +4.00 +0.00 +1.00
b :
+1.00
+0.00
+0.00
+0.00
+0.00
Press return to continue.
-----------------------------------
Pinv = V * invS_T * U_T
+1.0000 +0.0000 -0.0000 +0.0000 -0.0000
-0.1667 +0.1389 -0.3333 +0.2500 -0.0556
-5.0000 -0.3333 +0.0000 -0.0000 +0.3333
+1.1667 -0.6389 +1.3333 -0.7500 +0.0556
+4.0000 +1.3333 -0.0000 +0.0000 -0.3333
Press return to continue.
-----------------------------------
Solving this system yields a unique
least squares solution, namely
x = Pinv * b
+1.0000
-0.1667
-5.0000
+1.1667
+4.0000
The coefficients a, b, c, d, e, of the curve are :
+1.00x**2 -0.17y**2 -5.00x +1.17y +4.00 = 0
Press return to continue.