Aller au contenu

Mathc matrices/c26g

Un livre de Wikilivres.


Application


Installer et compiler ces fichiers dans votre répertoire de travail.

cq6.c
/* ------------------------------------ */
/*  Save as :   cq6.c                   */
/* ------------------------------------ */
#include "v_a.h"
/* ------------------------------------ */
#define   RA R3
#define   CA C3
#define   CB C3
/* ------------------------------------ */
void fun(void)
{
double **A  = r_q_mR(i_mR(RA,CA),99);
double **B  =   r_mR(i_mR(RA,CB),99.);
double **Ab = i_Abr_Ac_bc_mR(RA,CA,CB);

double **b[CB];
double **a[CA];

int c;

  clrscrn();
  printf(" A : Orthogonal");
  p_mR(A,S9,P4,C6);

  printf("  b[C0]     b[C1]     b[C2]  :");
  p_mR(B,S9,P1,C6);
 
  printf(" Ab :");
  c_A_b_Ab_mR(A,B,Ab);
  p_mR(Ab,S9,P4,C6);

  printf("  gj_TP_mR(Ab) :                x[C0]     x[C1]     x[C2]");
  gj_TP_mR(Ab);
  p_mR(Ab,S9,P4,C6);
  stop();
  
/* ------------------------------------ */
/* ------------------------------------ */
  for(c=C0; c<CB; c++)
     {
      b[c] = i_mR(RA,C1);      
      c_c_mR(B,(c+C1),b[c],C1); }  
      
  for(c=C0; c<CA; c++)
     {
      a[c] = i_mR(RA,C1);      
      c_c_mR(A,(c+C1),a[c],C1); }  
/* ------------------------------------ */
/* ------------------------------------ */ 

  clrscrn();      
  for(c=C0; c<CA; c++)
     {
      printf(" a[%d] :",c);      
      pE_mR(a[c],S12,P4,C6); }        
  stop();
  
  clrscrn(); 
  for(c=C0; c<CB; c++)
     {
      printf(" b[%d] :",c);      
      p_mR(b[c],S12,P4,C6); }  
  stop();
 
  clrscrn();       
  printf(" x[C0] :\n");        
  for(c=C0; c<CA; c++)   
      printf("%+15.7f   <b[C0],a[%d]> / ||a[%d||**2\n",
                                         dot_R(b[C0],a[c])/
                                         dot_R(a[c],a[c]), c,c);       
      
  printf("\n x[C1] :\n");        
  for(c=C0; c<CA; c++)   
      printf("%+15.7f   <b[C0],a[%d]> / ||a[%d||**2\n",
                                         dot_R(b[C1],a[c])/
                                         dot_R(a[c],a[c]), c,c);  

  printf("\n x[C2] :\n");        
  for(c=C0; c<CA; c++)   
      printf("%+15.7f   <b[C0],a[%d]> / ||a[%d||**2\n",
                                         dot_R(b[C2],a[c])/
                                         dot_R(a[c],a[c]), c,c);           
 
  printf("\n  gj_TP_mR(Ab) :\t\t\t  x[C0]        x[C1]         x[C2]");
  p_mR(Ab,S12,P7,C6); 

  
/* ------------------------------------ */
/* ------------------------------------ */       
  for(c=C0; c<CA; c++)  
       f_mR(a[c]); 
      
  for(c=C0; c<CB; c++)  
       f_mR(b[c]); 
/* ------------------------------------ */
/* ------------------------------------ */ 

  f_mR(Ab);
  f_mR(B);
  f_mR(A);
}
/* ------------------------------------ */
int main(void)
{
time_t t;

  srand(time(&t));
do
{
  fun();


} while(stop_w());

  return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */


Résoudre un système d'équation quand A est une matrice orthogonale :  

Ici B est composé de trois vecteurs. 



Exemple de sortie écran :
 --------------------------------
 A : Orthogonal
 +34.0000  -52.5770  +31.0235 
 -62.0000 -117.0067   -2.8444 
 +72.0000  -75.9277  -17.0993 

  b[C0]     b[C1]     b[C2]  :
    +58.0     -40.0     +39.0 
    -49.0     -42.0     -74.0 
    -26.0      -3.0      -5.0 

 Ab :
 +34.0000  -52.5770  +31.0235  +58.0000  -40.0000  +39.0000 
 -62.0000 -117.0067   -2.8444  -49.0000  -42.0000  -74.0000 
 +72.0000  -75.9277  -17.0993  -26.0000   -3.0000   -5.0000 

  gj_TP_mR(Ab) :                x[C0]     x[C1]     x[C2]
  +1.0000   +0.0000   -0.0000   +0.3081   +0.1009   +0.5454 
  +0.0000   +1.0000   +0.0000   +0.2096   +0.3261   +0.3145 
  +0.0000   +0.0000   +1.0000   +1.8871   -0.8474   +1.1924 

 Press return to continue. 


 --------------------------------
 a[0] :
 +3.4000e+01 
 -6.2000e+01 
 +7.2000e+01 

 a[1] :
 -5.2577e+01 
 -1.1701e+02 
 -7.5928e+01 

 a[2] :
 +3.1023e+01 
 -2.8444e+00 
 -1.7099e+01 

 Press return to continue. 


 --------------------------------
 b[0] :
    +58.0000 
    -49.0000 
    -26.0000 

 b[1] :
    -40.0000 
    -42.0000 
     -3.0000 

 b[2] :
    +39.0000 
    -74.0000 
     -5.0000 

 Press return to continue. 


 --------------------------------
 x[C0] :
     +0.3081304   <b[C0],a[0]> / ||a[0||**2
     +0.2096309   <b[C0],a[1]> / ||a[1||**2
     +1.8871285   <b[C0],a[2]> / ||a[2||**2

 x[C1] :
     +0.1009427   <b[C0],a[0]> / ||a[0||**2
     +0.3260652   <b[C0],a[1]> / ||a[1||**2
     -0.8473746   <b[C0],a[2]> / ||a[2||**2

 x[C2] :
     +0.5453653   <b[C0],a[0]> / ||a[0||**2
     +0.3144759   <b[C0],a[1]> / ||a[1||**2
     +1.1923792   <b[C0],a[2]> / ||a[2||**2

  gj_TP_mR(Ab) :			  x[C0]        x[C1]         x[C2]
  +1.0000000   +0.0000000   -0.0000000   +0.3081304   +0.1009427   +0.5453653 
  +0.0000000   +1.0000000   +0.0000000   +0.2096309   +0.3260652   +0.3144759 
  +0.0000000   +0.0000000   +1.0000000   +1.8871285   -0.8473746   +1.1923792 


 Press return to continue
 Press X      to stop