Psychologie cognitive pour l'enseignant/Élaboration : quelques techniques

Un livre de Wikilivres.
Sauter à la navigation Sauter à la recherche

On a vu auparavant que l'encodage se fonde essentiellement sur l'élaboration, ce qui fait que l'on retient mieux les choses que l'on a comprises, celles auxquelles on peut attacher une signification quelconque. Par exemple, l’expérience de Moreau (1973) a montré que l'on retient mieux une liste de villes en reliant celles-ci avec un trajet de Tour de France imaginaire. D'autres expériences faites sur des listes de dates ont montré qu'expliciter les relations de causalité entre des événements permet de mieux mémoriser la liste des dates associées. Ensuite, il existe bien des connaissances qui n'ont pas vraiment de sens et qui doivent être apprises par cœur. Les fameuses tables de multiplication et d'addition en sont un exemple mais des connaissances plus avancées entrent aussi dans cette catégorie.

Cette élaboration dépend surtout des connaissances antérieures de l'élève mais la formulation des explications joue aussi un rôle plus léger. Il semble évident que l'élaboration sera meilleure avec un cours qui explique pourquoi les choses sont ce qu'elles sont, d'où sortent les faits appris dans le cours, quelles sont les raisons, les principes physiques derrière les choses, comment les déduire à partir de principes de base, etc. Pour donner un exemple, les démonstrations mathématiques permettent de faire émerger naturellement de nombreuses associations. Mais de telles explications peuvent être complétées par divers outils pédagogiques, les principaux étant les procédés mnémotechniques, l'usage d'exemples, l'analogie, le questionnement, les histoires et les advances organisers. Les exemples auront un chapitre dédié, tant il y a à dire de choses dessus, ce qui fait que nous n'en parlerons pas dans ce chapitre. Nous parlerons des procédés mnémotechniques dans le chapitre sur les méthodes d’élaboration liées aux révisions. Dans ce chapitre, nous étudierons plus en détail les autres techniques.

Le bon usage des supports pédagogiques[modifier | modifier le wikicode]

Cela ne vous étonnera sans doute nullement, mais utiliser les bons supports pédagogiques permet souvent de faciliter l'élaboration. Par supports pédagogiques, nous voulons parler de l'usage de certaines notations (symboles mathématiques, chimiques, autres), de schémas ou d'illustrations, etc. Ces techniques permettent de simplifier les explications et peuvent rendre plus explicites les liens entre concepts, bien plu facilement qu'un long discours ne pourrait le faire. A cela, nous allons rajouter la manière de prendre des notes, qui modifie la manière dont l'élève traite ce qui lui est raconté. Précisons qu'un chapitre complet sera dédié à la fabrication des supports pédagogiques. Ce chapitre utilisera les acquis de la théorie de la charge cognitive pour aider les professeurs à concevoir des supports pédagogiques efficaces. Pour le moment, nous allons parler de quelques outils qui favorisent l'élaboration, sans parler de la charge cognitive. Les outils en question sont utiles à la fois aux enseignants et aux élèves.

L'usage de schémas, diagrammes et illustrations[modifier | modifier le wikicode]

Une autre manière pour faciliter l'élaboration est d'utiliser au mieux le support visuel. Après tout, le proverbe le dit si bien : un bon schéma vaut mieux qu'un long discours. La raison à cela est qu'utiliser des schémas, des diagrammes et des illustrations peut rendre plus évidentes les relations entre différents concepts. Un long discours est souvent assez compliqué à comprendre, et impose une charge cognitive qui n'est pas négligeable. Il faut se concentrer sur ce que le professeur raconte, ne pas en oublier une miette, tout en réfléchissant pour traiter ce qui est entendu. Les associations entre idées ne sont alors pas toujours des plus visibles, surtout si l'explication est longue et/ou complexe. En comparaison, un bon schéma réduit la charge cognitive car il permet de rendre les associations entre concepts plus simplement. Toutes les associations entre idées sont visibles simultanément, là où le discours ne le permet pas.

Théorie du double codage. On voit que la mémoire est composée d'un réseau verbal/conceptuel, et d'un réseau pour les informations visuelles. Des relations dites référentielles permettent de connecter des concepts avec leur représentation visuelle, l'image mentale du concept. Celles-ci permettent de s'imaginer un concept.

Mais il y a aussi une autre raison à cela. Certains chercheurs considèrent que la mémoire sémantique ne mémorise pas que des concepts, mais aussi des informations visuelles, auditives, etc. Par exemple, la théorie du double-codage stipule que la mémoire contiendrait un réseau verbal, qui mémorise des concepts et un réseau visuel qui mémoriserait des images mentales et des représentations visuelles. Cette théorie a été inventée pour expliquer les différences de mémorisation entre concepts concrets et abstraits. Expérimentalement, il est observé que les concepts concrets sont plus faciles à retenir que les concepts abstraits. Cela viendrait du fait que les concepts concrets sont généralement visualisables, contrairement aux concepts abstraits. On peut s'imaginer mentalement à quoi ressemble un chat, alors qu'il est plus difficile de donner une représentation des concepts de liberté ou de justice (sauf par métaphore ou analogie). Ainsi, les concepts concrets seraient représentés dans les deux sous-réseaux, tandis que les concepts abstraits le seraient uniquement dans le réseau verbal. La redondance des concepts concrets/imaginables les rendrait plus mémorables. Nous verrons quelles sont les conséquences pédagogiques dans le chapitre sur les supports pédagogiques.

Les conseils pédagogiques que l'on peut déduire de tout cela sont assez simples. Outre le système verbal, conceptuel, il est aussi possible d'utiliser le système visuel de la mémoire postulé par la théorie du double codage. Le principe est de faire en sorte que les concepts soient mémorisés à la fois dans la mémoire verbale et dans la mémoire visuelle, autant que possible. On parle alors de double codage. La conséquence est qu'utiliser des illustrations, dessins et schémas est une bonne pratique pédagogique. Évidemment, ce n'est pas possible pour les concepts abstraits et de nombreux concepts sont rétifs aux illustrations. Difficile de donner des schémas en cours de philosophie, par exemple. Mais beaucoup de concepts peuvent recevoir une représentation visuelle, et l'usage de schémas, de notations, de graphiques, et autres est clairement un atout. Nous détaillerons davantage ce conseil dans le chapitre consacré aux supports pédagogiques.

La prise de notes[modifier | modifier le wikicode]

Aussi bizarre que cela puisse paraitre, la prise de notes influence l'élaboration du matériel reçu, que ce soit en bien ou en mal. Dit autrement, toutes les prises de notes ne se valent pas. La prise de notes usuelle, qui consiste à recopier verbatim ce que raconte le professeur, est ainsi peu utile. Il s'agit en effet d'une situation de double tâche où le sujet doit faire deux choses à la fois : écouter et recopier demande d'analyser la forme, pas le fond. Les traitements sur cette forme utilisent des ressources cognitives qui auraient pu servir pour la compréhension. L'élève devant se concentrer sur les aspects orthographiques et phonétiques du discours ne pourra pas traiter en même temps le sens de ce qui est dit.

Cela explique que la prise de notes sur ordinateur est moins efficace que la prise de notes manuscrite chez la majorité des élèves. L'ordinateur permet de noter rapidement, ce qui fait que les élèves ont tendance à noter tout ce que raconte le professeur. En comparaison, noter à la main est nettement plus lent, ce qui fait que les élèves ne peuvent noter tout le cours, mais seulement ce qui est important. Pour cela, ils doivent analyser ce que le professeur raconte pour en dégager les idées générales et les principes importants, ce qui entraine de facto une élaboration du matériel écouté. La prise de notes sur ordinateur est donc une prise de notes verbatim, contrairement à la prise de note écrite.

Pour éviter les défauts de la recopie manuscrite verbatim, divers outils de prise de notes élaboratifs ont étés inventés. Les cartes mentales et schémas conceptuels en sont de bons exemples. Il s'agit de dessins sur lesquels on représente les concepts par des bulles, qui sont reliées entre elles par des associations ou relations logiques. Expérimentalement, ces cartes mentales sont un outil de prise de notes assez efficace[1][2][3][4].

Exemple de carte mentale.

On peut poursuivre avec les synthétiseurs. Il s'agit de diagrammes ou de dessins qui permettent de résumer et d'intégrer les informations apprises dans un cours dans un tout cohérent. Dans ceux-ci, les noms des concepts sont simplement reliés entre eux par des flèches qui indiquent quelle est la relation entre chaque concept. Cependant, on ne doit pas mélanger les relations d'inclusion, de causalité et de méronymie. On trouve ainsi un synthétiseur différent pour les relations catégorielles et les relations causales. Dans le cas des relations d'inclusion et de méronymie, l'ensemble forme une hiérarchie. Dans le cas des relations causales, l'ensemble doit former un réseau, éventuellement une chaine de concepts ou d’événements reliés entre eux par des flèches.

Au passage, vous remarquerez que les cartes mentales, synthétiseurs et schémas conceptuels sont des représentations visuelles. Ce qui rejoint ce qui a été dit dans la section précédente : le support visuel permet de rendre compte plus facilement des associations et relations entre concepts.

Les analogies et les métaphores[modifier | modifier le wikicode]

Il existe un moyen très simple pour connecter un concept à quelque chose de connu : l'usage d'analogies. L'analogie est un processus mental relativement simple, qui consiste à créer des relations entre une situation cible et une relation source. Le cas le plus simple d'analogie correspond à des problèmes du style : « trouver un A qui est à B ce que C est à D ». Ces problèmes se résolvent en plusieurs étapes :

  • l'encodage sélectif, qui consiste à identifier les propriétés des concepts utiles pour résoudre le problème ;
  • l'inférence de la relation entre C et D ;
  • la mise en correspondance, la découverte de la relation entre B et D ;
  • et enfin l'application, qui consiste à relier A et B par une relation analogue à celle entre C et D.

Par exemple, prenons l'analogie suivante : « Freud est à la psychanalyse ce que Mendel est à la génétique ». La première étape consiste à relier Freud avec Mendel, et psychanalyse avec génétique. Ensuite, la deuxième étape consiste à copier la relation entre Freud et psychanalyse sur les éléments qui correspondent, à savoir Mendel et génétique.

Les analogies plus complexes sont gérées par un processus identique, mais appliqué à des situations plus complexes. Ces situations sont représentées mentalement par des ensembles d’éléments reliés entre eux par des relations (logiques ou non). L'analogie met en correspondance chaque élément ou relation de la situation cible avec son équivalent dans la situation source. Pour faire une analogie parfaite, les éléments des deux situations doivent être connectés de la même manière dans les deux situations : si deux éléments d'une situation source sont reliés entre eux, alors les deux éléments correspondant dans la situation cible doivent aussi être connectés entre eux par une relation similaire. Les deux situations ont donc la même structure, elles partagent un même motif abstrait.

Quand utiliser des analogies ?[modifier | modifier le wikicode]

Utiliser une analogie demande de respecter quelques recommandations. Premièrement, l'analogie n'est utile que pour les élèves qui n'ont pas beaucoup de connaissances antérieures. En effet, les élèves ont tendance à effectuer automatiquement les analogies qui leur paraissent évidentes. Cela arrive quand les élèves reçoivent un enseignement dans des domaines qu'ils maîtrisent bien, ou qu'ils ont étudiés depuis quelques années. En clair, les analogies doivent introduire des concepts nouveaux, jamais vus auparavant. Cet effet est bien illustré par l'expérience de Donnelly et McDaniel, datée de 1993, qui a étudié la compréhension de principe de conservation du moment cinétique par des élèves de collège.

Ensuite, les analogies sont utiles uniquement pour les concepts complexes, difficiles à comprendre. Diverses études ont ainsi échoué à montrer un quelconque avantage de l'analogie, parce que les concepts à apprendre étaient trop simples, ce qui rendait l'analogie inutile. Dans ces conditions, l’analogie était une redondance inutile.

Comment utiliser des analogies ?[modifier | modifier le wikicode]

En plus de savoir quand utiliser les analogies, il faut savoir comment bien les utiliser. Pour faire une analogie parfaite, les éléments des deux situations doivent être connectés de la même manière dans les deux situations : si deux éléments d'une situation source sont reliés entre eux, alors les deux éléments correspondant dans la situation cible doivent aussi être connectés entre eux par une relation similaire. Cependant, cette mise en correspondance n’est pas toujours parfaite. Par exemple, certains éléments ne peuvent pas être mis en correspondance. De même, la structure des deux situations n’est pas forcément identique : les deux structures sont partiellement analogues. Dans ces conditions, il est important d’expliciter les différences entre situation cible et source. Sans cela, les élèves vont croire que les deux situations ont la même structure, et vont mal transférer.

Prenons un exemple bien connu : l'analogie entre intensité d'un courant électrique et débit hydraulique. Il est courant de comparer courant électrique et écoulement d'eau : le débit de l'écoulement est à l'eau ce que le courant électrique est aux charges électriques. De nombreux aspects des courants électriques suivent des lois physiques similaires ou identiques à celles qui gouvernent les écoulements hydrauliques. Dans une étude de 1983, Gentner a étudié les effets de cette analogie sur des élèves de collège. Son étude a montré que l'analogie permettait aux élèves de mieux comprendre les phénomènes électriques à l’œuvre dans une batterie. Mais cette analogie ne fonctionnait pas pour la compréhension des montages avec des résistances en série ou en parallèle. Cela provenait du fait que les élèves qui avaient reçu l'analogie pensaient que le courant fournit par le générateur restait constant quel que soit la disposition des résistances, de la même manière que le débit fourni par un réservoir reste constant. En réalité, le courant émis par un générateur dépend de la disposition des résistances : le courant n'est pas le même si le montage utilise des résistances en série ou en parallèle

Les histoires[modifier | modifier le wikicode]

Raconter des histoires en classe peut sembler relativement incongru mais il s'agit pourtant d'une technique qui semble faire ses preuves. Il se trouve que les histoires ont des avantages pédagogiques intéressants. Elles sont plus intéressantes, plus faciles à comprendre qu'un texte explicatif, et plus faciles à mémoriser[5]. Ces trois avantages proviennent d'une raison commune : la structure narrative force l'auditeur à relier les divers évènements de l'histoire suivant des liens de cause à effet[6]. Il faut dire que les évènements d'une histoire ne surviennent pas par hasard et les auditeurs s'attendent à ce qu'ils soient causés par d'autres. Lors de l'écoute ou de la lecture, les auditeurs vont naturellement chercher les relations de cause à effet entre évènements, favorisant l'élaboration, et donc la compréhension, la mémorisation de l'histoire, mais aussi l'intérêt de l'auditeur. En comparaison, les auditeurs d'un discours explicatif ne s'attendent pas forcément à ce que les connaissances évoquées soient reliées par des relations de cause à effet, celles-ci n'étant saillantes que si les explications sont correctement formulées ou que l'élève essaie de comprendre au mieux ce qu'on lui raconte. La structure narrative elle-même favorise de telles attentes et donc un traitement élaboratif du matériel lu/énoncé.

Ce conseil peut sembler limité, les contenus n'étant pas tous adaptés à une exposition narrative. Certes, les leçons d'Histoire (la matière) pourraient suivre une telle approche. Certaines leçons de sciences peuvent aussi suivre une approche historique qui explique comment les connaissances ont étés découvertes, en illustrant les expériences réalisées par les savants qui ont fait l'histoire. Mais au-delà de ces exemples, ce conseil semble peu avisé.

Pour ceux qui veulent en savoir plus, je conseille la lecture de l’article suivant, écrit par Daniel Willingham, spécialiste en psychologie cognitive et sciences de l'éducation américain : Why people love and remember stories.

Poser des questions[modifier | modifier le wikicode]

Une autre méthode demande à l'élève de réfléchir, de générer une partie du savoir à apprendre. Le fait que l'élève réfléchisse le force à élaborer, à former des relations, à générer des associations d'idées. Évidemment, l'élève réfléchit aussi quand il écoute son professeur, vu qu'il essaye de comprendre ce qui est raconté. Cependant, la situation où l'élève réfléchit est, sous certaines conditions assez restrictives, plus efficace de ce point de vue. La conséquence est que les connaissances générées par soi-même sont mieux mémorisées que celles qui sont simplement lues ou écoutées. Cela est bien résumé par Daniel Willingham, quand il dit que la mémoire est le résidu de la pensée. Les scientifiques résument cet état de fait sous le nom d'effet de génération. Cependant, si cet effet est assez robuste, il est à utiliser avec précaution dans une salle de classe, comme nous allons le voir dans ce qui va suivre.

Faire penser les élèves demande des méthodes pédagogiques ne demande pas forcément de changer ses pratiques pour des méthodes révolutionnaires. Le simple fait de poser des questions peut suffire, sous condition que l'élève doive réfléchir pour trouver la réponse. En clair, il suffit de poser aux élèves des questions ou des exercices qui demandent de la réflexion, comme des questions de compréhension ou des questions dont la réponse se trouve par un petit raisonnement. Ces questions doivent forcer les élèves à réfléchir sur ce qu'ils viennent d'apprendre. On donne parfois le nom, assez pompeux, de questions profondes à de telles questions/énoncés. Ce terme souligne le fait qu'une réflexion superficielle ne permet pas d'en trouver la réponse. Utilisé intelligemment, et avec parcimonie, ce questionnement permet de faire penser les élèves.

Il est recommandé de poser des questions qui demandent à l'élève d'expliquer et de justifier sa pensée. L'élève ne doit pas seulement donner la réponse, mais aussi la justifier, l'expliquer, montrer le raisonnement qui lui a permis d'atteindre la réponse. Cela force l'élève à réfléchir à sa réponse et à faire de nombreuses inférences et associations d'idées. Cela permet aussi de vérifier que l'élève a bien compris - l'élève peut donner une bonne réponse pour de mauvaises raisons - et de corriger ses erreurs cas échéant. Il faut cependant bien faire attention à corriger l'élève si son raisonnement et/ou sa réponse sont fausses. Cela pour ne pas laisser des erreurs s'installer. Par exemple, il est possible de demander à un élève d'expliquer pourquoi un fait énoncé dans le cours est vrai (ou faux). Ces questions, qui demandent de répondre à une question qui commence par "pourquoi", portent le doux nom d'interrogation élaborative. Les expériences réalisées sur le sujet[7] montrent que les explications formulées par les élèves sont mieux retenues que les explications lues ou fournies par le professeur. Mais ces études ont aussi montré que quelques conditions doivent être remplies pour que cette technique marche. Comme on le verra plus tard, cette technique fonctionne aussi en tant que technique de révision pour les élèves.

Quoi qu'il en soit, cette technique peut s'appliquer facilement et à un grand nombre de contenus à enseigner. Par exemple, les questions peuvent être posées lors d'un cours magistral/frontal, ou lors d'une séance d'exercice. Dans le premier cas, le professeur interrompt son cours de temps en temps pour poser des questions aux élèves. Il peut interroger un élève en particulier (quitte à le désigner volontaire...), ou interroger toute la classe. Donner la bonne réponse et le raisonnement qui mène à celle-ci est alors assez facile. Dans le second cas, les questions de réflexion sont données en exercices, parfois en même temps que d'autres exercices d'entrainement. Il faut cependant faire attention à en donner la correction avant la fin du cours, sans quoi la méthode marchera moins bien. On peut aussi en donner lors d'interrogations écrites ou d'évaluations, mais cela sert plus à vérifier que l'élève a compris le cours que comme apprentissage.

Le questionnement profond a cependant un défaut : les élèves doivent disposer des connaissances antérieures nécessaires pour trouver la réponse. Appliquer l'interrogation élaborative ou l'usage du questionnement ne donnera aucun résultat si les élèves n'ont pas beaucoup de connaissances antérieures, ou si celles-ci sont peu accessibles, mal maitrisées. Si ce n'est pas le cas, l'élève ne pourra pas trouver la réponse et ses réflexions resteront vaines. Sa pensée ne pourra pas créer les associations d'idées nécessaires pour répondre aux questions et/ou les justifier et le questionner ne portera pas ses fruits. Cette conclusion ne devrait pas vous surprendre, compte tenu de ce que nous avons dit dans les chapitres précédents. Une illustration, assez frustre, de ce phénomène est disponible dans l'étude de Woloshyn, Pressley, et Schneider (1992). Dans celle-ci, des étudiants canadiens et allemands ont subit diverses interrogations élaboratives à propos de provinces allemandes et canadiennes. L'effet de ces questions était très fort pour les provinces connues, mais pas pour les provinces inconnues. Les élèves allemands ne bénéficiaient pas beaucoup de l'interrogation élaborative pour les provinces canadiennes, alors qu'ils en bénéficiaient pour les provinces allemandes, et réciproquement.

Les pédagogies par découverte[modifier | modifier le wikicode]

Le courant constructiviste est un courant pédagogique née des théories sur le développement intellectuel de l'enfant de Piaget et de Lev Vygotsky, très lié à la pensée du philosophe Dewey et aux travaux des pédagogues Montessori et Freinet. Ces pédagogues ont, sans forcément le savoir, inventé des pédagogies qui mettent l'effet de génération au premier plan.Ces pédagogues pensent que l'élève doit être actif, à savoir qu'il doit penser par lui-même, expérimenter, découvrir, apprendre en faisant. Les constructivistes pensent aussi que la démarche d'apprentissage est plus importante que ce qui est appris. Le constructiviste met l'accent sur le processus de recherche d'une solution : c'est la recherche autonome, la formulation d'hypothèses, et le tâtonnement expérimental, qui permettent d'apprendre à réfléchir et à penser. Ces pédagogues ont, sans forcément le savoir, inventé des pédagogies qui mettent l'effet de génération au premier plan.

Les méthodes utilisées par les pédagogies de ce genre sont généralement :

  • des discussions ou débats entre élèves ;
  • des expérimentations autonomes ;
  • des recherches autonomes de solutions à un problème ;
  • des découvertes de concepts à partir d'exemples ;
  • des projets pédagogiques ;
  • des travaux en groupes ;
  • etc.

Les types de pédagogies actives[modifier | modifier le wikicode]

Il existe deux types de pédagogies actives, aussi appelées pédagogies par découverte. Avec les pédagogies non-guidées, le principe « apprendre en faisant » est appliqué un peu trop à la lettre. L'élève doit tout redécouvrir par lui-même sans aide du professeur. Généralement, les élèves ne sont pas guidés par le professeur dans leurs expériences, et doivent être autonomes. Par exemple, prenons le cas d'un cours sur la perception des couleurs. Avec une pédagogie par découverte non-guidée, le professeur commence simplement par un très léger cours sur la façon dont les couleurs sont perçues en fonction de l'intensité lumineuse, et demande ensuite aux élèves de concevoir une expérience pour examiner en détail cette relation entre couleur et intensité. Les élèves devront alors conduire cette expérience par eux-mêmes et découvrir seuls la relation demandée.

Les pédagogies par découverte guidée proviennent de la pensée de Bruner, un pédagogue des années 1960, psychologue cognitiviste de formation. Dans sa vision, l'élève ne devait pas réinventer la roue et seule une partie du savoir devait être découverte. Le professeur devait aborder en premier lieu des connaissances à fort pouvoir déductif, qui permettent à l'élève de déduire lui-même de nouvelles informations, de remplir les blancs, d'extrapoler avec efficacité. Si ces connaissances sont apprises, l'élève peut découvrir par lui-même ce qu'il faut apprendre. Ainsi, Bruner défendait une pédagogie par découverte fortement guidée par le professeur, et non des pédagogies dans lesquelles l'élève était laissé à lui-même. Lors des phases de découverte, le cours peut être vu comme une sorte de dialogue entre un professeur qui guide l'élève, et un élève qui formule des hypothèses. Il doit ainsi orienter les élèves vers les bonnes hypothèses, les suggérer, donner des indices, etc. Pour cela, le professeur peut utiliser les outils résumés dans le tableau qui suit. L'aide de la part du professeur est ce qu'on appelle en terme technique, de l'étayage.

L'efficacité des pédagogies actives[modifier | modifier le wikicode]

Les pédagogies actives, guidées ou non, ont cependant plusieurs problèmes. Premièrement, l'apprentissage par découverte est beaucoup plus long, et prend plus de temps pour enseigner la même chose qu'une exposition didactique. Ce désavantage peut être véritablement rédhibitoire. Bruner a même dit à propos des pédagogies non-guidées qu'il s'agissait « de la technique la plus inefficace qui soit pour regagner ce qui a été accumulé par l'humanité durant de longues périodes de l'histoire humaine ». Un autre pédagogue, du nom d'Ausubel, disait que le cours magistral a existé de tout temps pour une bonne raison : il s'agit tout simplement de la seule manière efficace pour enseigner une grande quantité de connaissances en un temps limité, ce dont est incapable l’apprentissage par découverte. Il disait d'ailleurs, dans un de ses livres daté de 1963 :

   Didactic exposition has always constituted the core of any pedagogic system, and, I suspect, […] it always will, because it is the only feasible and efficient method of transmitting large bodies of knowledge

Ensuite, il faut signaler que l'apprentissage par découverte ne convient pas du tout à des élèves novices, du fait de leur manque de connaissances antérieures. C'est ce qui fait qu'une grande majorité d'élève n'arrive tout simplement pas à découvrir ce qu'il faut par lui-même, et ce d'autant plus quand les tâches données aux élèves sont complexes, difficiles, inadaptées aux élèves. Ce n'est pas pour rien que la majorité des découvertes scientifiques ont mis des années ou des siècles à être découvertes par certains savants. Ce manque de connaissances entraine de plus une mauvaise utilisation de la mémoire de travail. Dans le document nommé « Why Minimal Guidance During Instruction Does Not Work: An Analysis of the Failure of Constructivist, Discovery, Problem-Based, Experiential, and Inquiry-Based Teaching », Sweller, Clark et Kirschner prétendent que l'apprentissage basé sur des problèmes serait incompatible avec la limitation de la mémoire de travail, en utilisant des arguments provenant de la théorie de la charge cognitive. A l'appui de cette affirmation, on peut citer l'expérience réalisée par Tuovinen et Sweller en 1999[8], dans laquelle quatre groupes sont comparés. L'expérience utilise deux groupes de novices et deux autres composés d'élèves dotés de connaissances antérieures. Dans ces deux groupes, le premier subit un enseignement par découverte (résolution autonome de problèmes), alors que l'autre subit un enseignement instructionniste (à base d'exemples guidés). Le résultat est que le groupe novice qui subit un enseignement par découverte a les pires résultats de tous les groupes, les résultats étant inférieurs à la moitié de la moyenne des trois autres sous-groupes ! Par contre, les étudiants disposant de connaissances antérieures arrivaient à se débrouiller correctement dans la tâche d'enseignement par découverte. En somme, l'enseignement par découverte est utile pour des élèves doués, disposant d'une base solide de connaissances qui leur permettent de faire leurs propres déductions. Mais pour des élèves novices, qui découvrent une matière ou un concept, l'enseignement par découverte est à bannir.

Enfin, un dernier défaut est que le professeur a peu d'emprise sur la réflexion des élèves. Un élève libre de réfléchir par lui-même peut parfaitement se perdre dans sa réflexion, suivre de fausses pistes, faire des déductions fausses, et ainsi de suite. L'élève peut parfaitement déduire un grand nombre d'informations fausses ou erronées, qui s'accumulent en mémoire et perturbent les apprentissages futurs par interférence. Alors certes, le professeur peut, dans les pédagogies guidées, corriger ces erreurs, ce qui atténue le problème. Mais encore faut-il que le professeur puisse vérifier la manière dont les élèves ont réfléchi, et quels sont les résultats qu'ils ont obtenus. Ce qui n'est pas possible pour toutes les matières. Pour illustrer ce genre de cas de figure, imaginez un élève disséquer une grenouille sans instructions, de manière totalement libre...

Des comparaisons expérimentales entre ces deux types de pédagogies par découverte donnent des résultats très nettement en faveur des pédagogies par découverte guidée. Par exemple, les études de Fay et Mayer (1994) et de Lee et Thompson (1997) montrent que les pédagogies par découvertes guidées donnent de meilleurs résultats que les pédagogies par découverte non-guidée pour l'apprentissage de la programmation. Un autre exemple vient de l'étude de l'apprentissage basé sur des problèmes, une forme de pédagogie active. Une revue de la littérature, effectuée par Hattie dans son ouvrage Visible Learning montre que l'apprentissage basé sur des problèmes n'est pas efficace que prévu. L'efficacité est mesurée par ce qu'on appelle une taille d'effet, qui vaut 0.15 dans le cas de l'apprentissage basé sur des problèmes. Un effet inférieur à 0.20 est tellement faible qu'on le considère comme quasiment inefficace.

Pour résumer, l'usage d'un minimum de pédagogie active guidée peut être bénéfique dans des situations bien maitrisées. Mais demander aux élèves de tout redécouvrir par eux-mêmes est une erreur. Rendre les élèves actifs demande de la parcimonie, et une certaine maitrise de sa classe et de la gestion de la séance.

Références[modifier | modifier le wikicode]

  1. Cunningham (2005) : Mindmapping: Its Effects on Student Achievement in High School Biology
  2. Brian Holland, Lynda Holland, Jenny Davies (2004). An investigation into the concept of mind mapping and the use of mind mapping software to support and improve student academic performance.
  3. Farrand, Hussain, and Hennessy (2002) : "The efficacy of the mind map study technique". Medical Education.
  4. Marzano, R et al (2001) : Classroom Instruction that Works.
  5. Graesser et al., 1994
  6. Meyers & Duffy, 1990
  7. Quelques expériences de ce type sont résumée dans le document récapitulatif "Improving Students’ Learning With Effective Learning Techniques: Promising Directions From Cognitive and Educational Psychology", rédigé par Dunlosky, Rawson, Marsh, Nathan, et Willingham.
  8. A comparison of cognitive load associated with discovery learning and worked examples, Tuovinen et Sweller, 1999.