Psychologie cognitive pour l'enseignant/Faire des liens

Un livre de Wikilivres.
Sauter à la navigation Sauter à la recherche


Dans le chapitre précédent, nous avons vu que, pour être mémorisées ou comprises, les informations à apprendre doivent se connecter à des connaissances déjà présentes en mémoire. Ce processus d'association à ce qui est déjà su porte le petit nom d'élaboration. Dit autrement : apprendre, c'est faire des liens. Et plus un concept a de liens avec d'autres, plus celui-ci est compris, mémorisé efficacement, intégré dans une structure conceptuelle riche. Si un concept n’est pas relié à d’autres, il sera totalement isolé dans la mémoire sémantique et ne sera pas accessible : l’élève l’aura appris par cœur, mais il ne l'aura pas compris. Là où le "par cœur" donne naissance à un très faible nombre d'associations, la compréhension crée un grand nombre de relations lors de l'encodage. Comme le dit Develay : « Le sens vient des liens construits entre les savoirs et non pas de leur empilement. […] apprendre, ce n’est pas amasser, mais c’est relier des notions pour en construire d’autres plus abstraites ».

Mais cette élaboration n'a pas systématiquement lieu ou elle peut mal se passer, pour plusieurs raisons.

  • La première est la surcharge de la mémoire à court terme. Celle-ci est en effet l'endroit où les relations se forment, et sa capacité limitée pose alors un problème : si celle-ci est surchargée, du fait d'un nombre trop important d'items, les relations ne peuvent se former. Un chapitre complet sera dédié à cette problématique.
  • Une autre raison est que la plupart, si ce n'est tous les concepts, ne peuvent se former qu'en combinant des connaissances antérieures entre elles. Si ces connaissances ne sont pas acquises, l'apprentissage ne peut avoir lieu. Pour le dire autrement tout concept a des pré-requis, des connaissances sans lesquelles on ne peut pas le comprendre. Cela impose des contraintes assez fortes sur l'ordre d'apprentissage des notions : tel concept doit être appris avant tel autre s'il est un de ses pré-requis.
  • Enfin, on ne peut faire fi des liens logiques qui existent entre les savoirs. Force est de constater que l'on ne peut pas associer un quelconque concept avec n'importe quel autre. Pour intégrer au mieux les nouveaux concepts dans le réseau mnésique, il faut exploiter les liens avec les connaissances antérieures, ce qui demande d'organiser les informations d'une certaine manière. Présenter des connaissances comme une suite de faits isolés ne peut convenir, compte tenu de l'organisation en réseaux de la mémoire. On doit structurer ses explications d'une certaine manière, afin que l'apprentissage se fasse au mieux. L'ordre dans lequel on aborde les notions ne peut être arbitraire, mais doit refléter une certaine organisation logique, avoir une structure qui dévoile les liens entre les concepts à apprendre.

Ce chapitre va aborder chaque point dans l'ordre : il parlera rapidement de l'usage de la mémoire de travail, puis du bon usage des connaissances antérieures et enfin de l'élaboration.

La charge cognitive[modifier | modifier le wikicode]

Si la mémoire à long terme est sollicitée dans l'encodage, il ne faut pas oublier le rôle déterminant de la mémoire à court terme, aussi appelée mémoire de travail. Pour rappel, cette mémoire maintient à l'esprit une quantité limitée d'informations durant une dizaine de secondes. C'est elle qui sert à mémoriser un numéro de téléphone avant de le composer ou à comprendre ce que dit un professeur. L'idée principale est qu'elle a une capacité limitée à 4 informations maximum (autrefois, on pensait que c'était 7 ± 2). Des informations trop complexes ont donc tendance à saturer la mémoire de travail, perturbant l'apprentissage, contrairement à des informations simples. Éviter de saturer la mémoire de travail lors de l'apprentissage est donc très important.

La mémoire de travail est la porte d'entrée de la mémoire à long terme. Toute information doit passer en premier lieu par la mémoire de travail pour y être reliée à des connaissances antérieures. Il n'est donc pas étonnant que quelques études aient montré que la réussite scolaire est fortement corrélée à la capacité de la mémoire de travail. Par exemple, la capacité de la mémoire de travail à 5 ans est un bon indicateur de la réussite scolaire ultérieure [1]. De même, il existe une forte corrélation entre faible capacité de la mémoire de travail et échec scolaire[2].

Par ailleurs, certaines pratiques pédagogiques ne tiennent pas compte la mémoire de travail. Les pédagogies actives, dans lesquelles l'élève doit réfléchir de manière autonome, sont une catastrophe de ce point de vue: elles demandent explicitement que l'élève soit mis face à des situations complexes dès le début de l'apprentissage. Les études expérimentales sur le sujet montrent clairement que ces pédagogies ont des résultats inférieurs aux autres [3][4]. Ce constat remet sur le devant de la scène une théorie pédagogique assez ancienne : la théorie de la charge cognitive. Créée par Sweller dans les années 1970, cette théorie a reçu de nombreuses vérifications expérimentales. Assez mal connue en France, elle commence à avoir une grande influence dans les pays anglo-saxons. Plusieurs chapitres de ce cours lui seront dédiés.

Les connaissances antérieures : de l'ordre primaire des notions[modifier | modifier le wikicode]

Pour être comprise, une nouvelle connaissance doit d'arrimer à ce qui est déjà su, elle doit être élaborée. Les connaissances antérieures sont donc la matière première de tout apprentissage : si elles ne sont pas là, l'apprentissage sera limité à du par cœur, l'élève ne pouvant rien élaborer. Plus les connaissances antérieures sont nombreuses, plus les nouveaux concepts auront de points d’amarrage sur lesquels s'associer. Là où un novice aura du mal à apprendre des définitions ou des connaissances de base, faute de pouvoir les associer à quelque chose de familier, l'expert pourra facilement retenir de nouvelles informations en les reliant à un vaste réseau de connaissances acquises de longue date.[5][6]

Une conséquence de cela est qu'apprendre beaucoup de choses permet de donner une bonne base aux apprentissages futurs[7][8]. Une grande partie des mauvais résultats des élèves provient d'ailleurs d'une sémantique trop pauvre en connaissances antérieures. Ce fait est bien illustré par le fait que les résultats scolaires sont bien corrélés aux savoirs acquis, bien plus qu'au QI ou toute autre mesure des capacités cognitives. Pour donner quelques chiffres, une étude d'Alain Lieury nous dit que la corrélation entre connaissances encyclopédiques en classe de 5e et résultats scolaire l'année suivante est d'approximativement 0,72. La corrélation est la même avec le taux de redoublement 4 ans plus tard. Notons que ces deux corrélations sont plus élevées que les corrélations avec les tests de QI ou de raisonnement (0,50)[9].

Pour résumer, l'apprentissage est un processus cumulatif dans lequel le savoir appelle le savoir. Plus on sait de choses, plus on pourra facilement relier de nouvelles informations à des connaissances antérieures. Cela a fait dire au psychologue Ausubel que le facteur le plus important dans l'apprentissage est ce que l'élève sait déjà :

« The most important single factor influencing learning is what the learner already knows. Ascertain this and teach him accordingly »

Les pré-requis : des acquis nécessaires[modifier | modifier le wikicode]

Pour commencer, insistons sur une évidence : lors de l'apprentissage, les informations à apprendre doivent avoir quelque chose auquel s'arrimer, se relier. Il arrive qu'elles ne se connectent à rien, alors qu'elles le pourraient. Diverses raisons techniques, comme une surcharge de la mémoire de travail, peuvent entrainer un tel résultat. Mais dans certains cas, il se peut que les connaissances à apprendre n'aient tout simplement rien à quoi se lier, ou tout du moins très peu de choses. Cela arrive pour les informations les plus basiques, celles qui sont à apprendre par cœur. Tel est le cas des tables de multiplications, des relations entre sons et lettres (correspondances graphèmes-phonèmes), des définitions de base en mathématiques (la définition d'un triangle), etc.

Dans d'autres cas, cela arrive à cause de mauvais choix pédagogiques, quand les concepts sont vu dans un ordre inadéquat. Rappelons que tout concept a des pré-requis, c'est à dire qu'il faut que certaines notions soient connues de l'élèves pour que le concept puisse être appris. Par exemple, vous ne pourrez pas faire comprendre la notion de multiplication à un élève qui ne sait pas ce qu'est l'addition, car l'addition est un pré-requis pour la multiplication. Dans le même genre, difficile de faire comprendre ce qu'est une dérivée à quelqu'un qui ne sait pas ce qu'est une limite, vu que la notion de limite fait partie intégrante de la définition de la dérivée. Si on peut tenter de faire comprendre un concept sans ses pré-requis, cela n’amènera qu'à un apprentissage par cœur qui donnera au mieux l'illusion de la compréhension. Pour éviter de construire sur des fondations qui ne sont pas là, le professeur doit impérativement construire ses progressions pour que les prérequis soient abordés avant la notion.

Les connaissances propédeutiques : facultatives, mais facilitatrices[modifier | modifier le wikicode]

Si les pré-requis doivent être connus de l'élève, d'autres connaissances antérieures peuvent s'associer aux nouveaux concepts. Par exemple, il est possible que le concept à apprendre s'associe à d'autres connaissances préalables, non-nécessaires pour comprendre le nouveau concept mais qui en facilitent l'acquisition. De telles connaissances sont appelées des connaissances propédeutiques. Par définition, elles ne sont pas nécessaires pour comprendre le concept : ce ne sont pas des pré-requis. Mais elles aident à comprendre le nouveau concept et en facilitent l'apprentissage. Elles permettent grossièrement de rattacher le concept à apprendre à quelque chose de connu.

Elles peuvent être utilisées pour former des analogies, par exemple. Pour illustrer ce cas, je vais prendre l'exemple des méthodes de simplifications des équations logiques, utilisées en électronique. Ces équations décrivent des circuits électroniques en utilisant une algèbre, l’algèbre de Boole, qui ressemble à l’algèbre normale sur certains points, mais pas sur d'autres. Eh bien les élèves qui ont une connaissance correcte de l’algèbre auront beaucoup plus de facilité à comprendre ces méthodes de simplifications que ceux qui sont mauvais en mathématiques. L’algèbre usuelle sert ici de connaissance propédeutique à l’algèbre de Boole. Et on pourrait citer d'autres exemples.

Quoi qu’il en soit, bien utiliser les connaissances propédeutiques demande de les introduire avant le concept dont elles facilitent l'apprentissage. Cela demande donc de bien séquencer les notions, de bien gérer leur ordre d'apprentissage, mais aussi parfois de rajouter des concepts dans le cursus, d'ajouter des connaissances qui sont réutilisées plus tard pour simplifier des explications ultérieures.

L'organisation du matériel à apprendre[modifier | modifier le wikicode]

Si la mémoire est formée d'un véritable réseau de connaissances, celles-ci ne sont pas disposées n'importe comment. L'organisation du matériel à apprendre est fondamentale : du matériel non-organisé, composé d’éléments isolés et déstructuré sera très difficile à apprendre, alors que du matériel structuré et organisé s'apprendra très facilement. Tout le défi est de trouver comment organiser le matériel à apprendre, afin de lui donner un maximum de sens. Il n'y a pas de recette miracle, mais on peut cependant parler de quelques formes particulières d'organisation. Dans ce qui va suivre, nous allons parler des classifications, qui permettent de relier des concepts proches sur la base de leurs ressemblances et de leurs différences. Nous parlerons aussi d'autres formes d'organisation, moins évidentes, mais qui peuvent s'appliquer à beaucoup de sujets.

Les classifications et catégorisations[modifier | modifier le wikicode]

La recherche sur la mémoire dite sémantique, celle des concepts et des faits, a longtemps mis l'accent sur une forme d'organisation bien précise : les classifications. Les concepts seraient ainsi organisés autour de classifications, spécifiques à un domaine ou à une discipline. La recherche a surtout étudié les classifications les plus simples, dites unidimensionnelles, que l'on peut représenter sous la forme d'une hiérarchie, d'une arborescence de catégories. On peut voir le tout comme un système de poupées russes : les catégories plus spécifiques sont incluses, emboîtées dans les catégories plus générales du niveau supérieur de la hiérarchie. Les concepts les plus concrets sont situés près de la base de la hiérarchie et les plus abstraits en haut. On peut préciser que les exemples sont intégrés dans ces hiérarchies : ils sont situés tout en bas et sont vus comme des catégories très spécialisées. Une telle hiérarchie est appelée une structure cognitive. Elle relie des concepts en faisant appel à trois types différents de relations :

  • les hyperonymies vont relier les catégories à des catégories plus générales qui englobent la catégorie de base : le concept « Cocker » sera relié au concept « Chien », le concept « Chat » sera relié au concept « Animal », etc. ;
  • les hyponymies vont relier chaque catégorie à ses catégories dérivées, les catégories plus concrètes qu'on obtient en spécialisant la catégorie avec l'ajout de propriétés : la catégorie « félins » sera reliée aux concepts de « chat », « tigre », « lion », « panthère », etc. ;
  • les relations structurales, qui relient les catégories et exemples à leurs propriétés : c'est grâce à ces relations qu'on sait qu'un oiseau peut voler, qu'un canari est jaune et ainsi de suite.

Un des premiers modèles de la mémoire sémantique, le modèle de Collins et Quillian se fondait exclusivement sur de telles structures cognitives, affirmant que les propriétés peuvent être communes. Par exemple, les concepts « oiseau » et « canari » partagent les propriétés suivantes : les deux peuvent voler, ont des plumes, des ailes, etc. Cela vient du fait qu'un canari est un oiseau, et qu'il hérite donc des propriétés communes à tous les oiseaux : toute sous-catégorie hérite des propriétés des catégories plus générales auxquelles elle est reliée. Le modèle gère ces propriétés héritées en ajoutant une hypothèse : l'économie cognitive. Cette hypothèse dit que seules les propriétés spécifiques à un concept sont reliées à celui-ci : les propriétés héritées d'un concept plus générales sont reliées uniquement au concept le plus général, mais pas aux autres concepts. Par exemple, les propriétés « peut voler », « a des ailes », « a des plumes » seront reliées au concept « oiseau », mais pas au concept « canari ». Ce mécanisme évite les duplications inutiles de propriétés.

Organisation des classifications en mémoire.

L'importance des classifications[modifier | modifier le wikicode]

Cette organisation permet de classer les concepts acquis, mais il rend aussi la mémoire "intelligente", dans le sens où certaines déductions consistent en une simple recherche en mémoire. Ces inférences sont surtout des inférences catégorielles qui entraînent un jugement avec des catégories, à savoir les questions du type "est-ce que X possède la propriété Y ?". Ces déductions sont extrêmement courantes, non seulement dans la vie quotidienne, mais aussi en milieu scolaire. On peut illustrer comment la mémoire permet de répondre à ces questions, avec l'exemple qui va suivre. Supposons qu'on demande à un sujet si un chat a des poumons. Le fait est qu'avoir des poumons n'est pas forcément une propriété intrinsèque au concept de "chat", mais est une propriété de concepts plus généraux, comme le concept de "mammifère". Or, l'activation du concept "Chat" activera automatiquement les catégories superordonnées, permettant d’accéder aux propriétés héritées des concepts plus généraux. Par exemple, un enfant saura qu'un chat a des poumons parce qu'il sait qu'un chat est un mammifère et que les mammifères ont des poumons. En clair : l'activation diffusante dans une structure cognitive permet de faire des inférences, des déductions sur les propriétés des objets et des concepts.

Ces classifications permettent d'organiser ce que l'élève doit apprendre, facilitant ainsi le rappel ultérieur. Comme le dit un peu abusivement Alain Lieury, comprendre, c'est classer. Si l'élève ne dispose pas de ces structures cognitives, l'apprentissage ultérieur sera moins efficace. Lieury, Lemoine et Le Guelte l'ont montré dans une expérience où des enfants de différents niveaux scolaires devaient mémoriser une liste de mots : un groupe témoin recevait une liste désorganisée alors que l'autre avait droit à une liste organisée en structure cognitive. Pour les élèves de 4e et 6e, cette organisation était très efficace : les élèves disposaient des structures cognitives qui permettaient un gain de mémorisation de la liste. En revanche, les élèves de CM1 ne disposaient pas vraiment des structures cognitives nécessaires, qui n'avaient pas encore été acquises par instruction : l'organisation en structure cognitive ne donnait pas de gain comparé au groupe témoin.

Apprendre demande d'arrimer les nouvelles connaissances dans une structure cognitive, si possible à des catégories ni trop générales ni trop spécifiques. Et à ce petit jeu, l'ordre d'apprentissage des concepts vient mettre son grain de sel. Par exemple, un enfant de 6/7 ans sait qu'un chat est un animal, mais ne connaît pas la notion de mammifère : la hiérarchie n'est donc pas parfaite et l'apprentissage du concept de mammifère ne supprimera pas le lien fait entre chien et animal. Choisir l'endroit où placer un nouveau concept dans cette structure est très important. Cela évite à l'élève de croire que certaines propriétés ne sont valables que pour une classe restreinte de concepts alors que ce n'est pas le cas : de telles sous-généralisations sont assez courantes. Cela évite aussi les sur-généralisations, dans lesquelles l'élève croit que certaines propriétés sont valides pour une classe de phénomènes ou d'objets alors que ce n'est pas le cas.

Généraliser ou dériver ?[modifier | modifier le wikicode]

Au passage, on peut se demander dans quel ordre parcourir les classifications et autres structures cognitives : faut-il partir du haut pour redescendre, ou au contraire partir des concepts les plus spécialisés et remonter progressivement ? Cette question peut se reformuler ainsi : faut-il partir des concepts généraux pour ensuite en déduire les concepts plus particuliers, ou au contraire faut-il partir du particulier pour abstraire progressivement des concepts plus généraux. Les deux méthodes sont à adopter selon le sujet abordé et les circonstances. La méthode qui va du particulier vers le général est appelée méthode par généralisation. Elle part des concepts particuliers et cherche à en extraire les points communs pour former un concept plus général. Elle met l'accent sur les ressemblances entre concepts, elle demande d'abstraire quelque chose de commun à plusieurs exemples. La méthode opposée, appelée méthode par dérivation, dériver les concepts particuliers en ajoutant des propriétés à un concept plus général. Avec cette méthode, des concepts proches sont abordés séquentiellement, à la suite du concept commun, de la catégorie super-ordonnée. Ce faisant, les concepts semblables sont abordés selon les différences qu'ils entretiennent, les propriétés qu'ils ne partagent pas.

Il est certain que certaines classifications sont plus faciles à comprendre en partant des concepts généraux et en les spécialisant, alors que d'autres sujets sont plus simples à comprendre avec l'autre méthode. Une des raisons à cela est la familiarité des concepts à aborder : mieux vaut commencer par aborder les concepts les plus familiers, ceux que l'élève peut comprendre plus facilement, ceux qu'il peut relier à des choses déjà connues. Dans certains cas, les catégories générales peuvent être peu intuitives pour l'élève, contrairement aux catégories particulières. Un exemple serait la classification des animaux : la différence entre un chat et un lion (tous deux des félins) est plus intuitive que la différence entre mammifères marsupiaux et placentaires. Mais ce n'est pas un reproche général : il existe de nombreux cas où les catégories générales sont au contraire plus familières que les catégories particulières. Pensez par exemple à la classification des arbres : la différence entre un feuillu et un conifère est plus simple à comprendre que la différence entre un hêtre d'un chêne. De manière générale, la familiarité ne dépend pas trop de la place dans la hiérarchie de la structure cognitive. Les chercheurs ont longtemps pensé que les concepts intermédiaires, ni trop généraux, ni trop particuliers, étaient ceux qui étaient les plus facilement appris, mais la roue a un peu tourné depuis. Ce n'est pas un cas général.

Si l'on se trouve dans un cas où ce détail ne joue pas ou peu, on peut trouver des défauts à la méthode par généralisation, que la méthode par dérivation n'a pas. Déjà, la méthode par dérivation a une charge cognitive plus faible, elle fait un meilleur usage des ressources limitées de la mémoire de travail. Elle part des concepts qui ont le plus petit nombre de propriétés et chaque dérivation d'un nouveau concept ajoute quelques propriétés. A chaque étape, le nombre de propriétés à ajouter tient facilement dans la mémoire de travail. Par contre, la méthode par généralisation demande à l'élève de mémoriser un grand nombre de propriété pour chaque concept. Elle part en effet des concepts les plus particuliers, qui ont un grand nombre de propriétés. De plus, chaque étape demande de comparer divers concepts, et d'en dégager les propriétés commune. Toutes les propriétés de tous les concepts doivent être analysées pour en dégager un motif commun. La charge de la mémoire de travail est alors extrême. Autant dire que cette méthode est assez compliquée à utiliser et qu'elle donnera de mauvais résultats chez les élèves faibles, qui ont une mauvaise mémoire de travail.

Un dernier défaut de la méthode par généralisation est qu'elle met l'accent sur les ressemblances entre concepts. Or, plus deux concepts sont semblables, plus ils ont de chances d'être reliés aux mêmes indices de récupération. Ils peuvent alors interférer entre eux lors du rappel, ce qui les rend plus faciles à confondre. Ausubel qualifie ce genre de phénomène d'assimilation oblitératrice. Ce phénomène n'a pas lieu si on met l'accent sur les différences entre deux concepts, ce que fait la méthode par dérivation. Deux concepts différents, dérivé du même concept général, seront mis en contraste l'un avec l'autre, ce qui accentuera leurs différences. Cela nous dit qu'il vaut mieux aborder les concepts en partant du général pour aller vers le particulier, pour limiter les interférences.

Les relations thématiques[modifier | modifier le wikicode]

Il est vite apparu que les classifications ne sont pas l'alpha et l'oméga de l'organisation mentale. Cette organisation rigide qu'est la structure cognitive ne suffit pas à rendre compte des résultats expérimentaux, même les plus simples. Les structures cognitives ne sont pas forcément aussi bien organisées, le principe d’économie cognitive est au mieux approximatif, et la forme exacte des classifications dépend de l'ordre d'apprentissage des concepts. Il existe aussi des classifications qui ne s'expriment pas facilement sous la forme de structures cognitives, mais passons. Attardons-nous à la place sur un fait bien plus intéressant : on sait aujourd'hui que d’autres formes de relations existent, qu'il s'agisse de relations de causalité entre évènements, de relations qui permettent de localiser des objets, et bien d'autres encore. Ces relations sont regroupées, par convention, dans un ensemble extrêmement hétérogène appelé relations thématiques.

Les relations thématiques permettent décrire des objets ou de former une représentation de situations ou d'évènements. Pour simplifier, les professeurs sont intéressés par deux types de relations thématiques : les relations de causalité, et les relations de méronymie (les relations partie-tout). Les premières sont clairement les plus intéressantes, car elles sont le fondement même des explications (ou tout du moins de la majorité d'entre elles). Elles permettent de comprendre pourquoi certains évènements ont lieu, elles permettent de se représenter des systèmes, des mécanismes, des évènements. Mais il y a malheureusement peu à dire sur le sujet. Par contre, les relations de méronymie sont plus intéressantes. On peut aussi parler de manière générale des autres relations thématiques, notamment pour parler des concepts abstraits, des détails et autres.

Les relations de méronymie : le lien entre un tout et ses parties[modifier | modifier le wikicode]

Les relations de méronymie décrivent les relations entre un objet et ses parties. Tout ce que l'on peut dire est qu'elles permettent de représenter des objets ou situations complexes, que l'on peut décomposer en éléments plus petits. Dès qu'un regroupement spatial existe, ces relations interviennent systématiquement. Par exemple, on peut citer le cas d'un sous-domaine de l'électronique : l'architecture d'un ordinateur. Ce domaine étudie comment fonctionnent les ordinateurs, comment concevoir leurs circuits, etc. Les ordinateurs sont composés de circuits (processeurs, RAM, I/O), qui sont eux-mêmes composés de sous-circuits (ALU et décodeur d'instruction pour le CPU, plan mémoire et décodeur pour la RAM, et autres), qui eux-mêmes sont composés de sous-sous-circuits (additionneurs, ...) et ainsi de suite jusqu'aux transistors. Un autre exemple est celui de l'anatomie : le corps humain est composé de systèmes (immunitaire, digestif, nerveux, ...) eux-mêmes composés d'organes, eux-mêmes composés de tissus, eux-mêmes composés de cellules, elles-mêmes composé d'organites, etc. On peut se représenter le tout sous la forme d'une hiérarchie d'objet imbriqués les uns dans les autres, comme des poupées russes.

Nous en reparlerons plus en détail dans le chapitre sur la charge cognitive, où nous verrons comment exploiter ces relations au mieux. Pour anticiper, on va montrer que dans certains cas, il vaut mieux voir les parties indépendamment les unes des autres, avant de les combiner pour former un tout. La problématique est assez similaire à celle des relations taxonomiques : doit-on partir des morceaux pour les combiner en un tout, ou doit-on partir du tout et le décomposer en parties ? Dans le premier cas, on parle d'approche ascendante, alors que le second est celui d'une approche descendante. Le fait est que cela dépend du sujet abordé, mais certains sujets sont plus faciles à aborder avec une approche ascendante, pour des raisons qui impliquent la mémoire de travail. Quand cela arrive, il faut alors mieux voir chaque partie indépendamment les unes des autres, avant de les combiner. Cela n'est pas forcément facile, et faire ainsi peut réduire l'élaboration. Le fait de séparer ainsi les parties peut forcer à retard l'introduction de certaines notions, retardant l'établissement d'associations d'idées. Mais cela réduit la charge de la mémoire de travail, pour diverses raisons.

Les relations générales (causalité et autres)[modifier | modifier le wikicode]

Du point de vue de l'élaboration, il est possible de placer les concepts sur un continuum qui va des détails (les plus précis et plus ciblés) aux grands principes et idées générales (plus abstraites). Les détails sont souvent isolés, reliés à un petit nombre de concepts, guère plus, alors que les idées générales sont souvent des concepts centraux, qui servent de hub dans les réseaux sémantiques. Si les détails se mémorisent, les idées générales et grands principes se comprennent. Alors certes, les détails et anecdotes sont importants, mais ils devraient idéalement être intégrés dans un socle de connaissances conceptuelles qui leur donnent un sens, qui permettent de les relier entre eux. Et pour cela, les idées générales sont les plus indiquées : elles servent de liant qui colle les détails entre eux. Les faits ne valent rien par eux-mêmes, du moins tant qu'ils ne sont pas interconnectés entre eux. Attention, cependant : cela ne signifie pas que le par cœur est mauvais, mais que les connaissances acquises par cœur doivent être reliées entre elles par la suite.

Une raison à cela est que les cas abstraits regroupent un grand nombre de situations, ils sont capables de s'adapter à de nombreuses situations ou problèmes. Par exemple, une méthode assez générale permet de résoudre un grand nombre de problèmes, là où les méthodes ciblées sont moins rentables. Les connexions sont alors plus nombreuses avec les méthodes générales, qui s'associent avec un grand nombre d'exemples et d'applications, contrairement aux méthodes ciblées. Attention : cela ne signifie pas que les méthodes ciblées soient inutiles : elles peuvent être plus rapides à appliquer, mais elles sont plus difficiles à retenir. Une méthode très situationnelle sera souvent moins entrainée, moins associée à des exercices ou exemples, contrairement aux méthodes générales, appliquées sur un plus grand nombre d'exercice/exemples. Le raisonnement vaut aussi pour les concepts généraux, qui s'instancient dans un plus grand nombre de cas, comparé aux concepts plus précis et ciblés.

Les recherches en compréhension de texte ont montré que l'extraction des idées générales d'un texte est un processus extrêmement important pour la compréhension. On peut le montrer avec quelques expériences assez simples. Une des expériences les plus marquantes à ce sujet fut celle sur l'effet intégrateur du titre. Dans celle-ci, l'expérimentateur constitua trois groupes de cobayes qui devaient tous lire un même texte compliqué : un des groupes de cobayes connaissait le titre après avoir lu le texte, tandis que l'autre avait accès au titre avant la lecture. Le groupe qui avait eu accès au titre avant le texte réussissait mieux que l'autre. Cela vient du fait que le titre donne l'idée générale du texte, idée sur laquelle les informations vont venir s'associer progressivement : cela permet de donner du sens au texte et de créer un maximum d'associations. Le fait que le titre doit être placé avant le texte pour avoir un effet le montre : il n'y a pas beaucoup d’associations retardées, à rebours.

Cette abstraction des connaissances acquises influence non seulement la mémorisation mais aussi l'utilisation ultérieure des connaissances, leur transfert. Pour en donner un exemple, on peut citer la fameuse étude de Chi et al. (1981). Dans celle-ci, les expérimentateurs ont observé comment des experts (des professeurs de physique) et des novices (des étudiants en début de cursus) catégorisaient des exercices de physique. Leur étude a montré que les novices ont tendance à fonder leurs analyses sur des détails présents dans l'énoncé (coefficients numériques, vocabulaire utilisé, ...), alors que les experts ont tendance à penser en fonction d'idées générales et de principes abstraits (la loi de conservation de l'énergie, la quantité de mouvement, ...). Au fur et à mesure que les étudiants progressent dans leurs études, ils classent de plus en plus ces exercices en fonction des caractéristiques générales.

Références[modifier | modifier le wikicode]

  1. "Investigating the predictive roles of working memory and IQ in academic attainment", Alloway en 2010
  2. "The cognitive and behavioral characteristics of children with low working memory", Alloway, Gathercole, Kirkwood, Elliott (2009)
  3. "Why minimal guidance during instruction does not work: an analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching"
  4. "Putting students to the path for leaning, a case for fully guided instruction", par Clark, Sweller et Krishner.
  5. Rittle-Johnson, B., Star, J. R., & Durkin, K. (2009). The importance of prior knowledge when comparing examples: Influences on conceptual and procedural knowledge of equation solving. Journal of Educational Psychology, 101(4), 836-852.http://dx.doi.org/10.1037/a0016026
  6. Memory & Cognition, October 2007, Volume 35, Issue 7, The effects of prior knowledge and text structure on comprehension processes during reading of scientific texts.
  7. Bandalos, Finney, & Geske, 2003
  8. E. Wood, Willoughby, Bolger, & Younger, 1993
  9. Alain Lieury (1996)