Mathc complexes/a223
Apparence
Installer et compiler ces fichiers dans votre répertoire de travail.
c00b.c |
---|
/* ------------------------------------ */
/* Save as : c00b.c */
/* ------------------------------------ */
#include "w_a.h"
/* ------------------------------------ */
/* ------------------------------------ */
#define RA R4
#define CA C5
#define Cb C1
/* ------------------------------------ */
#define RAFree R5
#define CbFree C3
/* ------------------------------------ */
void fun(void)
{
double ab[RA*((CA+Cb)*C2)] ={
+2, -1, -6, +2, -7, -6, -6, +6, +7, +8, 0,0,
+9, -9, -2, +6, +1, -6, +2, +5, -7, -1, 0,0,
+2*3,-1*3, -6*3,+2*3, -7*3,-6*3, -6*3,+6*3, +7*3,+8*3, 0,0,
-1, -3, +3, +7, +8, +7, +6, -7, -9, +7, 0,0
};
double **Ab = ca_A_mZ(ab, i_Abr_Ac_bc_mZ(RA,CA,Cb));
double **A = c_Ab_A_mZ(Ab, i_mZ(RA,CA));
double **b = c_Ab_b_mZ(Ab, i_mZ(RA,Cb));
double **Ab_New = i_Abr_Ac_bc_mZ(RAFree,CA,CbFree) ;
double **b_Free = i_mZ(RAFree,CbFree);
double **A_bFree = i_mZ(RA,CbFree);
clrscrn();
printf("Find a basis for the orthogonal complement of A :\n\n");
printf(" A :");
p_mZ(A, S3,P0, S3,P0, C8);
printf(" b :");
p_mZ(b, S3,P0, S3,P0, C8);
printf(" Ab :");
p_mZ(Ab, S3,P0, S3,P0, C8);
stop();
clrscrn();
printf(" gj_PP_mZ(Ab) :");
p_mZ(gj_PP_mZ(Ab), S7,P3, S7,P3, C5);
stop();
clrscrn();
put_zeroR_mZ(Ab,Ab_New);
put_freeV_mZ(Ab_New);
printf(" put_zero_row_mZ(Ab,Ab_New);\n"
" put_freeV_mZ(Ab_New);\n\n"
" Ab_New :");
p_mZ(Ab_New, S7,P3, S7,P3, C5);
stop();
clrscrn();
printf(" gj_mZ(Ab) :");
p_mZ(gj_mZ(Ab_New), S7,P3, S7,P3, C5);
printf(" b_Free : Free variables");
p_mZ(c_Ab_b_mZ(Ab_New,b_Free), S8,P4, S8,P4, C4);
stop();
clrscrn();
printf(" A :");
p_mZ(A, S3,P0, S3,P0, C8);
printf(" b_Free :");
p_mZ(b_Free, S8,P4, S8,P4, C4);
printf(" A * b_Free :");
p_mZ(mul_mZ(A,b_Free,A_bFree), S8,P4, S8,P4, C4);
stop();
f_mZ(Ab);
f_mZ(A);
f_mZ(b);
f_mZ(Ab_New);
f_mZ(b_Free);
f_mZ(A_bFree);
}
/* ------------------------------------ */
int main(void)
{
fun();
return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */
On commence par calculer les variables libres.
Les colonnes de b_free sont une base pour le complément orthogonal de A.
A * b_free = 0
Cela prouve que les vecteurs lignes de A sont orthogonaux aux vecteurs colonnes de b_free.
Exemple de sortie écran :
------------------------------------
Find a basis for the orthogonal complement of A :
A :
+2 -1i -6 +2i -7 -6i -6 +6i +7 +8i
+9 -9i -2 +6i +1 -6i +2 +5i -7 -1i
+6 -3i -18 +6i -21-18i -18+18i +21+24i
-1 -3i +3 +7i +8 +7i +6 -7i -9 +7i
b :
+0 +0i
+0 +0i
+0 +0i
+0 +0i
Ab :
+2 -1i -6 +2i -7 -6i -6 +6i +7 +8i +0 +0i
+9 -9i -2 +6i +1 -6i +2 +5i -7 -1i +0 +0i
+6 -3i -18 +6i -21-18i -18+18i +21+24i +0 +0i
-1 -3i +3 +7i +8 +7i +6 -7i -9 +7i +0 +0i
Press return to continue.
------------------------------------
gj_PP_mZ(Ab) :
+1.000 +0.000i -0.444 +0.222i +0.389 -0.278i -0.167 +0.389i -0.333 -0.444i
+0.000 -0.000i +1.000 +0.000i +1.158 +1.189i +1.277 -0.682i -1.137 -1.841i
+0.000 +0.000i +0.000 +0.000i +1.000 +0.000i -0.045 -0.955i -1.274 +1.014i
+0.000 +0.000i +0.000 +0.000i +0.000 +0.000i +0.000 +0.000i +0.000 +0.000i
+0.000 +0.000i
+0.000 -0.000i
+0.000 +0.000i
+0.000 +0.000i
Press return to continue.
------------------------------------
put_zero_row_mZ(Ab,Ab_New);
put_freeV_mZ(Ab_New);
Ab_New :
+1.000 +0.000i -0.444 +0.222i +0.389 -0.278i -0.167 +0.389i -0.333 -0.444i
+0.000 -0.000i +1.000 +0.000i +1.158 +1.189i +1.277 -0.682i -1.137 -1.841i
+0.000 +0.000i +0.000 +0.000i +1.000 +0.000i -0.045 -0.955i -1.274 +1.014i
+0.000 +0.000i +0.000 +0.000i +0.000 +0.000i +1.000 +0.000i +0.000 +0.000i
+0.000 +0.000i +0.000 +0.000i +0.000 +0.000i +0.000 +0.000i +1.000 +0.000i
+0.000 +0.000i +0.000 +0.000i +0.000 +0.000i
+0.000 -0.000i +0.000 +0.000i +0.000 +0.000i
+0.000 +0.000i +0.000 +0.000i +0.000 +0.000i
+0.000 +0.000i +1.000 +0.000i +0.000 +0.000i
+0.000 +0.000i +0.000 +0.000i +1.000 +0.000i
Press return to continue.
------------------------------------
gj_mZ(Ab) :
+1.000 +0.000i +0.000 +0.000i +0.000 +0.000i +0.000 +0.000i +0.000 +0.000i
-0.000 +0.000i +1.000 +0.000i -0.000 +0.000i -0.000 +0.000i -0.000 +0.000i
+0.000 +0.000i +0.000 +0.000i +1.000 +0.000i +0.000 +0.000i +0.000 +0.000i
+0.000 +0.000i +0.000 +0.000i +0.000 +0.000i +1.000 +0.000i +0.000 +0.000i
+0.000 +0.000i +0.000 +0.000i +0.000 +0.000i +0.000 +0.000i +1.000 +0.000i
+0.000 +0.000i -0.309 -0.917i -0.234 +2.202i
-0.000 +0.000i -0.195 -0.478i -1.544 +1.500i
+0.000 +0.000i +0.045 +0.955i +1.274 -1.014i
+0.000 +0.000i +1.000 +0.000i +0.000 +0.000i
+0.000 +0.000i +0.000 +0.000i +1.000 +0.000i
new_b : Free variables
+0.0000 +0.0000i -0.3088 -0.9167i -0.2339 +2.2023i
-0.0000 +0.0000i -0.1947 -0.4779i -1.5444 +1.4996i
+0.0000 +0.0000i +0.0452 +0.9546i +1.2744 -1.0135i
+0.0000 +0.0000i +1.0000 +0.0000i +0.0000 +0.0000i
+0.0000 +0.0000i +0.0000 +0.0000i +1.0000 +0.0000i
Press return to continue.
------------------------------------
A :
+2 -1i -6 +2i -7 -6i -6 +6i +7 +8i
+9 -9i -2 +6i +1 -6i +2 +5i -7 -1i
+6 -3i -18 +6i -21-18i -18+18i +21+24i
-1 -3i +3 +7i +8 +7i +6 -7i -9 +7i
b_Free :
+0.0000 +0.0000i -0.3088 -0.9167i -0.2339 +2.2023i
-0.0000 +0.0000i -0.1947 -0.4779i -1.5444 +1.4996i
+0.0000 +0.0000i +0.0452 +0.9546i +1.2744 -1.0135i
+0.0000 +0.0000i +1.0000 +0.0000i +0.0000 +0.0000i
+0.0000 +0.0000i +0.0000 +0.0000i +1.0000 +0.0000i
A * b_Free :
+0.0000 +0.0000i +0.0000 +0.0000i +0.0000 +0.0000i
+0.0000 +0.0000i +0.0000 +0.0000i -0.0000 +0.0000i
+0.0000 +0.0000i +0.0000 +0.0000i +0.0000 +0.0000i
+0.0000 +0.0000i +0.0000 +0.0000i -0.0000 -0.0000i
Press return to continue.