Aller au contenu

Mathc complexes/a229

Un livre de Wikilivres.


Application


Installer et compiler ces fichiers dans votre répertoire de travail.


c00d.c
/* ------------------------------------ */
/*  Save as :   c00d.c                  */
/* ------------------------------------ */
#include "w_a.h"  
/* ------------------------------------ */
/* ------------------------------------ */
#define   RA     R4
#define   CA     C5
#define   Cb     C1
/* ------------------------------------ */
void fun(void)
{
double ab[RA*((CA+Cb)*C2)] ={
   -8*2,-4*2,  +7*2,-7*2,  +6*2,+7*2,  -9*2,-4*2,  +6*2,-1*2,   0,0,
   -8*3,-4*3,  +7*3,-7*3,  +6*3,+7*3,  -9*3,-4*3,  +6*3,-1*3,   0,0,
   -8*4,-4*4,  +7*4,-7*4,  +6*4,+7*4,  -9*4,-4*4,  +6*4,-1*4,   0,0,
   -8*7,-4*7,  +7*7,-7*7,  +6*7,+7*7,  -9*7,-4*7,  +6*7,-1*7,   0,0
};
double **Ab = ca_A_mZ(ab,i_Abr_Ac_bc_mZ(RA,CA,Cb));
double **A  = c_Ab_A_mZ(Ab,i_mZ(RA,CA));
double **b  = c_Ab_b_mZ(Ab,i_mZ(RA,Cb));
double **B  =              i_mZ(RA-R3,CA);

  clrscrn();
  printf("Basis for a Row Space by Row Reduction :\n\n");
  printf(" A :");
  p_mZ(A, S3,P0, S3,P0, C8);
  printf(" b :");
  p_mZ(b, S3,P0, S3,P0, C8);
  printf(" Ab :");
  p_mZ(Ab, S3,P0, S3,P0, C8);
  stop();

  clrscrn(); 
  printf(" The nonzero rows vectors of Ab without b\n"
         " form a basis for the row space of  A \n\n"
         " Ab :");
  printf(" gj_PP_mZ(Ab) :");
  p_mZ(gj_PP_mZ(Ab), S8,P4, S8,P4, C4);
     
  c_Ab_A_mZ(Ab,A);
  
  c_r_mZ(A,R1,B,R1);
  
  printf(" B :  Is a basis for a Row Space of A by Row Reduction");
  p_mZ(B, S8,P4, S8,P4, C4);
  
  stop();   
  
  f_mZ(Ab);
  f_mZ(A);
  f_mZ(B);
  f_mZ(b);
}
/* ------------------------------------ */
int main(void)
{

  fun();

  return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */


La position des pivots de Ab donne la position des lignes de A qui forment une base pour l'espace lignes de A.


Exemple de sortie écran :
 ------------------------------------ 
Basis for a Row Space by Row Reduction :

 A :
-16 -8i +14-14i +12+14i -18 -8i +12 -2i 
-24-12i +21-21i +18+21i -27-12i +18 -3i 
-32-16i +28-28i +24+28i -36-16i +24 -4i 
-56-28i +49-49i +42+49i -63-28i +42 -7i 

 b :
 +0 +0i 
 +0 +0i 
 +0 +0i 
 +0 +0i 

 Ab :
-16 -8i +14-14i +12+14i -18 -8i +12 -2i  +0 +0i 
-24-12i +21-21i +18+21i -27-12i +18 -3i  +0 +0i 
-32-16i +28-28i +24+28i -36-16i +24 -4i  +0 +0i 
-56-28i +49-49i +42+49i -63-28i +42 -7i  +0 +0i 

 Press return to continue. 


 ------------------------------------ 
 The nonzero rows vectors of Ab without b
 form a basis for the row space of  A 

 Ab : gj_PP_mZ(Ab) :
 +1.0000 +0.0000i  -0.3500 +1.0500i  -0.9500 -0.4000i  +1.1000 -0.0500i 
 +0.0000 +0.0000i  +0.0000 +0.0000i  -0.0000 -0.0000i  +0.0000 +0.0000i 
 +0.0000 +0.0000i  +0.0000 +0.0000i  -0.0000 -0.0000i  +0.0000 +0.0000i 
 +0.0000 +0.0000i  +0.0000 +0.0000i  -0.0000 -0.0000i  +0.0000 +0.0000i 

 -0.5500 +0.4000i  -0.0000 +0.0000i 
 +0.0000 +0.0000i  +0.0000 +0.0000i 
 +0.0000 +0.0000i  +0.0000 +0.0000i 
 +0.0000 +0.0000i  +0.0000 +0.0000i 

 B :  Is a basis for a Row Space of A by Row Reduction
 +1.0000 +0.0000i  -0.3500 +1.0500i  -0.9500 -0.4000i  +1.1000 -0.0500i 

 -0.5500 +0.4000i 

 Press return to continue.