Aller au contenu

Mathc complexes/a231

Un livre de Wikilivres.


Application


Installer et compiler ces fichiers dans votre répertoire de travail.


c00b.c
/* ------------------------------------ */
/*  Save as :   c00b.c                  */
/* ------------------------------------ */
#include "w_a.h"  
/* ------------------------------------ */
/* ------------------------------------ */
#define   RA     R4
#define   CA     C5
#define   Cb     C1
/* ------------------------------------ */
void fun(void)
{
double ab[RA*((CA+Cb)*C2)] ={
   -3,-1,  +8,-3,  +2,+8,  +8,+6,  +7,+8,  0,0, 
   -3,-1,  +8,-3,  +2,+8,  +8,+6,  +7,+8,  0,0,  
   -3,-1,  +8,-3,  -4,+2,  -1,-3,  +6,+5,  0,0, 
   -3,-1,  +8,-3,  -5,-3,  -1,+0,  +4,+3,  0,0,   
};

double **Ab = ca_A_mZ(ab,i_Abr_Ac_bc_mZ(RA,CA,Cb));
double **A  = c_Ab_A_mZ(Ab,i_mZ(RA,CA));
double **b  = c_Ab_b_mZ(Ab,i_mZ(RA,Cb));

double **B  =              i_mZ(RA,C3) ;
double **BT =              i_mZ(C3,RA) ;
double **BTb =   i_Abr_Ac_bc_mZ(C3,RA,Cb);

  clrscrn();
  printf("Basis for a Column Space by Row Reduction :\n\n");
  printf(" A :");
  p_mZ(A, S3,P0, S3,P0, C8);
  printf(" b :");
  p_mZ(b, S3,P0, S3,P0, C8);
  printf(" Ab :");
  p_mZ(Ab, S3,P0, S3,P0, C8);
  stop();

  clrscrn(); 
  printf(" The leading 1’s of Ab give the position \n"
         " of the columns  of A which form a basis \n"
         " for the column space of A \n\n"
         " A :");
  p_mZ(A, S6,P3, S5,P3, C5);
  printf(" gj_PP_mZ(Ab) :");
  p_mZ(gj_PP_mZ(Ab), S6,P3, S5,P3, C5);
  stop();

  clrscrn(); 
  printf(" A :");
  p_mZ(A, S6,P3, S5,P3, C5);
  printf(" gj_PP_mZ(Ab) :");
  p_mZ(Ab, S6,P3, S5,P3, C5);
  
  c_c_mZ(A,C1,B,C1);
  c_c_mZ(A,C3,B,C2);
  c_c_mZ(A,C4,B,C3);

  printf(" B :");
  p_mZ(B, S8,P4, S8,P4, C4);
    
  stop();

  clrscrn();   
  printf(" Check if the columns of B are linearly independent\n\n"
         " BT :");
  p_mZ(transpose_mZ(B,BT), S4,P0, S3,P0, C4);  
  printf(" BTb :");
  p_mZ(c_mZ(BT,BTb), S4,P0, S3,P0, C5); 
  printf(" gj_PP_mZ(BTb) :");
  p_mZ(gj_PP_mZ(BTb), S8,P4, S8,P4, C4); 
        
  stop();     
  
  f_mZ(Ab);
  f_mZ(A);
  f_mZ(b);
  f_mZ(B);
  f_mZ(BT);
  f_mZ(BTb);
}
/* ------------------------------------ */
int main(void)
{

  fun();

  return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */


La position des pivots de Ab donne la position des colonnes de A qui forment une base pour l'espace colonnes de A.


Exemple de sortie écran :
 ------------------------------------ 
Basis for a Column Space by Row Reduction :

 A :
 -3 -1i  +8 -3i  +2 +8i  +8 +6i  +7 +8i 
 -3 -1i  +8 -3i  +2 +8i  +8 +6i  +7 +8i 
 -3 -1i  +8 -3i  -4 +2i  -1 -3i  +6 +5i 
 -3 -1i  +8 -3i  -5 -3i  -1 +0i  +4 +3i 

 b :
 +0 +0i 
 +0 +0i 
 +0 +0i 
 +0 +0i 

 Ab :
 -3 -1i  +8 -3i  +2 +8i  +8 +6i  +7 +8i  +0 +0i 
 -3 -1i  +8 -3i  +2 +8i  +8 +6i  +7 +8i  +0 +0i 
 -3 -1i  +8 -3i  -4 +2i  -1 -3i  +6 +5i  +0 +0i 
 -3 -1i  +8 -3i  -5 -3i  -1 +0i  +4 +3i  +0 +0i 

 Press return to continue. 


 ------------------------------------ 
 The leading 1s of Ab give the position 
 of the columns  of A which form a basis 
 for the column space of A 

 A :
-3.000-1.000i +8.000-3.000i +2.000+8.000i +8.000+6.000i +7.000+8.000i 
-3.000-1.000i +8.000-3.000i +2.000+8.000i +8.000+6.000i +7.000+8.000i 
-3.000-1.000i +8.000-3.000i -4.000+2.000i -1.000-3.000i +6.000+5.000i 
-3.000-1.000i +8.000-3.000i -5.000-3.000i -1.000+0.000i +4.000+3.000i 

 gj_PP_mZ(Ab) :
+1.000+0.000i -2.100+1.700i -1.400-2.200i -3.000-1.000i -2.900-1.700i 
-0.000+0.000i +0.000-0.000i +1.000+0.000i +0.759-0.335i +0.447+0.012i 
-0.000+0.000i +0.000-0.000i +0.000-0.000i +1.000+0.000i -0.049+0.231i 
+0.000+0.000i -0.000-0.000i +0.000+0.000i -0.000-0.000i -0.000+0.000i 

-0.000+0.000i 
-0.000+0.000i 
-0.000+0.000i 
+0.000+0.000i 

 Press return to continue. 


 ------------------------------------ 
 A :
-3.000-1.000i +8.000-3.000i +2.000+8.000i +8.000+6.000i +7.000+8.000i 
-3.000-1.000i +8.000-3.000i +2.000+8.000i +8.000+6.000i +7.000+8.000i 
-3.000-1.000i +8.000-3.000i -4.000+2.000i -1.000-3.000i +6.000+5.000i 
-3.000-1.000i +8.000-3.000i -5.000-3.000i -1.000+0.000i +4.000+3.000i 

 gj_PP_mZ(Ab) :
+1.000+0.000i -2.100+1.700i -1.400-2.200i -3.000-1.000i -2.900-1.700i 
+0.000+0.000i +0.000+0.000i +1.000-0.000i +0.759-0.335i +0.447+0.012i 
+0.000+0.000i +0.000+0.000i +0.000-0.000i +1.000-0.000i -0.049+0.231i 
+0.000+0.000i +0.000-0.000i +0.000+0.000i +0.000+0.000i +0.000+0.000i 

+0.000+0.000i 
+0.000+0.000i 
+0.000+0.000i 
+0.000+0.000i 

 B :
 -3.0000 -1.0000i  +2.0000 +8.0000i  +8.0000 +6.0000i 
 -3.0000 -1.0000i  +2.0000 +8.0000i  +8.0000 +6.0000i 
 -3.0000 -1.0000i  -4.0000 +2.0000i  -1.0000 -3.0000i 
 -3.0000 -1.0000i  -5.0000 -3.0000i  -1.0000 +0.0000i 

 Press return to continue. 


 ------------------------------------ 
 Check if the columns of B are linearly independent

 BT :
  -3 -1i   -3 -1i   -3 -1i   -3 -1i 
  +2 +8i   +2 +8i   -4 +2i   -5 -3i 
  +8 +6i   +8 +6i   -1 -3i   -1 +0i 

 BTb :
  -3 -1i   -3 -1i   -3 -1i   -3 -1i   +0 +0i 
  +2 +8i   +2 +8i   -4 +2i   -5 -3i   +0 +0i 
  +8 +6i   +8 +6i   -1 -3i   -1 +0i   +0 +0i 

 gj_PP_mZ(BTb) :
 +1.0000 +0.0000i  +1.0000 +0.0000i  -0.2600 -0.1800i  -0.0800 +0.0600i 
 +0.0000 -0.0000i  +0.0000 -0.0000i  +1.0000 +0.0000i  +0.2377 +0.7186i 
 +0.0000 -0.0000i  +0.0000 -0.0000i  +0.0000 -0.0000i  +1.0000 +0.0000i 

 +0.0000 +0.0000i 
 +0.0000 -0.0000i 
 +0.0000 -0.0000i 

 Press return to continue.