Aller au contenu

Mathc matrices/c21w

Un livre de Wikilivres.


Application


Installer et compiler ces fichiers dans votre répertoire de travail.


c00d.c
/* ------------------------------------ */
/*  Save as :   c00d.c                  */
/* ------------------------------------ */
#include "v_a.h"
/* ------------------------------------ */
int main(void)
{
double ab[R4*C6]={
    +1,      4,     5,      6,     2,    0,
    +3,     -2,     1,      4,     6,    0,
    -1,      0,    -1,     -2,    -2,    0, 
     2,      3,     5,      7,     4,    0,  
};

double **Ab = ca_A_mR(ab,i_Abr_Ac_bc_mR(R4,C5,C1));
double **A  = c_Ab_A_mR(Ab,i_mR(R4,C5));
double **b  = c_Ab_b_mR(Ab,i_mR(R4,C1));

double **Ab_free = i_Abr_Ac_bc_mR(csize_A_R(Ab),csize_A_R(Ab),C1+C3);

double **b_free  = i_mR(rsize_R(Ab_free),csize_b_R(Ab_free)); 

double **A_bfree = i_mR(rsize_R(A),csize_R(b_free)) ;


int r;

  clrscrn();
  printf("Find a basis for the orthogonal complement of A :\n\n");
  printf(" A :");
  p_mR(A,S6,P1,C10);
  printf(" b :");
  p_mR(b,S6,P1,C10);
  printf(" Ab :");
  p_mR(Ab,S6,P1,C10);
  stop();

  clrscrn();
  printf(" Ab :  gj_PP_mR(Ab,NO) :");
  gj_PP_mR(Ab,NO);
  p_mR(Ab,S7,P3,C10);
  
  put_zeroR_mR(Ab,Ab_free);  
//  printf(" Ab_free : put_zeroR_mR(Ab,Ab_free);");  
//  p_mR(Ab_free,S7,P3,C10);  

  put_freeV_mR(Ab_free);
//  printf(" Ab_free : put_freeV_mR(Ab_free);");  
//  p_mR(Ab_free,S7,P3,C10);  
  stop();
  
  clrscrn();  
  r = rsize_R(Ab_free);
  while(r>R1)    
        zero_below_pivot_gj1Ab_mR(Ab_free,r--);
        
  printf(" Ab_free : zero_below_pivot_gj1Ab_mR(Ab_free,r--);");  
  p_mR(Ab_free,S7,P3,C10);  

  c_Ab_b_mR(Ab_free,b_free);
//  printf(" b_free :"); 
//  p_mR(b_free,S10,P3,C7);
  printf(" b_free : free variables");
  p_freeV(b_free,S6,P3);
  stop();	
  
  clrscrn();
  printf(" A :");
  p_mR(A,S10,P3,C10);
  printf(" b_free :"); 
  p_mR(b_free,S10,P3,C7);
  printf(" A * bfree :"); 
  p_mR(mul_mR(A,b_free,A_bfree),S10,P3,C7);
  stop();
  
  f_mR(Ab);
  f_mR(Ab_free);
  f_mR(b_free);
  f_mR(b);
  f_mR(A);
  f_mR(A_bfree);
  
  return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */


On commence par calculer les variables libres.

Les colonnes de b_free sont une base pour le complément orthogonal de A.

          A * b_free = 0

Cela prouve que les vecteurs lignes de A sont orthogonaux aux vecteurs colonnes de b_free.



Exemple de sortie écran :
 ------------------------------------ 
Find a basis for the orthogonal complement of A :

 A :
  +1.0   +4.0   +5.0   +6.0   +2.0 
  +3.0   -2.0   +1.0   +4.0   +6.0 
  -1.0   +0.0   -1.0   -2.0   -2.0 
  +2.0   +3.0   +5.0   +7.0   +4.0 

 b :
  +0.0 
  +0.0 
  +0.0 
  +0.0 

 Ab :
  +1.0   +4.0   +5.0   +6.0   +2.0   +0.0 
  +3.0   -2.0   +1.0   +4.0   +6.0   +0.0 
  -1.0   +0.0   -1.0   -2.0   -2.0   +0.0 
  +2.0   +3.0   +5.0   +7.0   +4.0   +0.0 

 Press return to continue. 

 ------------------------------------ 
 Ab :  gj_PP_mR(Ab,NO) :
 +1.000  -0.667  +0.333  +1.333  +2.000  +0.000 
 +0.000  +1.000  +1.000  +1.000  +0.000  +0.000 
 +0.000  +0.000  +0.000  +0.000  +0.000  +0.000 
 +0.000  +0.000  -0.000  -0.000  +0.000  +0.000 

 Press return to continue. 


 ------------------------------------ 
 Ab_free : zero_below_pivot_gj1Ab_mR(Ab_free,r--);
 +1.000  +0.000  +0.000  +0.000  +0.000  +0.000  -1.000  -2.000  -2.000 
 +0.000  +1.000  +0.000  +0.000  +0.000  +0.000  -1.000  -1.000  +0.000 
 +0.000  +0.000  +1.000  +0.000  +0.000  +0.000  +1.000  +0.000  +0.000 
 +0.000  +0.000  +0.000  +1.000  +0.000  +0.000  +0.000  +1.000  +0.000 
 +0.000  +0.000  +0.000  +0.000  +1.000  +0.000  +0.000  +0.000  +1.000 

 b_free : free variables
 x1 =  +0.000 -1.000*t -2.000*u -2.000*v
 x2 =  +0.000 -1.000*t -1.000*u +0.000*v
 x3 =  +0.000 +1.000*t +0.000*u +0.000*v
 x4 =  +0.000 +0.000*t +1.000*u +0.000*v
 x5 =  +0.000 +0.000*t +0.000*u +1.000*v

 Press return to continue. 

 ------------------------------------ 
 A :
    +1.000     +4.000     +5.000     +6.000     +2.000 
    +3.000     -2.000     +1.000     +4.000     +6.000 
    -1.000     +0.000     -1.000     -2.000     -2.000 
    +2.000     +3.000     +5.000     +7.000     +4.000 

 b_free :
    +0.000     -1.000     -2.000     -2.000 
    +0.000     -1.000     -1.000     +0.000 
    +0.000     +1.000     +0.000     +0.000 
    +0.000     +0.000     +1.000     +0.000 
    +0.000     +0.000     +0.000     +1.000 

 A * bfree :
    +0.000     +0.000     +0.000     +0.000 
    +0.000     +0.000     +0.000     +0.000 
    +0.000     +0.000     +0.000     +0.000 
    +0.000     +0.000     +0.000     +0.000 

 Press return to continue.