Mathc matrices/c25e1
Apparence
Installer et compiler ces fichiers dans votre répertoire de travail.
c01.c |
---|
/* ------------------------------------ */
/* Save as : c01.c */
/* ------------------------------------ */
#include "v_a.h"
#include "d.h"
/* --------------------------------- */
int main(void)
{
double p[R4*C3] ={ 1, 2, 3,
-1, 2, 1,
1, 0, 1,
1, 2, -1 };
double **Ap = ca_A_mR(p, i_mR(R4,C3));
double **A = m_Sphere_A_mR(Ap, i_mR(R5,C5));
int r;
clrscrn();
printf(" Theorem.\n\n");
printf(" A homogeneous linear system with as many equations\n");
printf(" as unknowns has a nontrivial solution if and only\n");
printf(" if the determinant of the coefficient matrix is\n");
printf(" zero.\n\n");
printf(" The equation of a sphere,\n");
printf(" With the values of the four points:\n\n");
printf(" c1(x^2 +y^2 +z^2) +c2x +c3y +c4z +c5 = 0\n\n");
for(r=R1;r<Ap[R_SIZE][C0];r++)
printf(" c1(x%d^2+y%d^2+z%d^2)"
" +c2x%d +c3y%d +c4z%d +c5 = 0\n",r,r,r,r,r,r);
stop();
clrscrn();
printf(" The four points:\n\n");
for(r=R1;r<Ap[R_SIZE][C0];r++)
printf(" P%d(%+.0f,%+.0f,%+.0f)",
r,Ap[r][C1],Ap[r][C2],Ap[r][C3]);
printf("\n\n Determinant:(cofactor expansion along the first row)\n\n");
printf(" x^2+y^2+z^2 x y z 1");
p_Det_mR(A,8,0);
printf(" The equation of the sphere : \n\n");
printf(" %+.0f(x^2+y^2+Z^2) %+.0fx %+.0fy %+.0fz %+.0f = 0\n\n",
cofactor_R(A,R1,C1),
cofactor_R(A,R1,C2),
cofactor_R(A,R1,C3),
cofactor_R(A,R1,C4),
cofactor_R(A,R1,C5));
printf(" Verify the result : \n\n");
for(r=R1;r<Ap[R_SIZE][C0];r++)
verify_eq_sphere_mR(A, Ap[r][C1],
Ap[r][C2],
Ap[r][C3]);
stop();
f_mR(A);
f_mR(Ap);
return 0;
}
/* --------------------------------- */
/* --------------------------------- */
Exemple de sortie écran :
------------------------------------
Theorem.
A homogeneous linear system with as many equations
as unknowns has a nontrivial solution if and only
if the determinant of the coefficient matrix is
zero.
The equation of a sphere,
With the values of the four points:
c1(x^2 +y^2 +z^2) +c2x +c3y +c4z +c5 = 0
c1(x1^2+y1^2+z1^2) +c2x1 +c3y1 +c4z1 +c5 = 0
c1(x2^2+y2^2+z2^2) +c2x2 +c3y2 +c4z2 +c5 = 0
c1(x3^2+y3^2+z3^2) +c2x3 +c3y3 +c4z3 +c5 = 0
c1(x4^2+y4^2+z4^2) +c2x4 +c3y4 +c4z4 +c5 = 0
Press return to continue.
The four points:
P1(+1,+2,+3) P2(-1,+2,+1) P3(+1,+0,+1) P4(+1,+2,-1)
Determinant:(cofactor expansion along the first row)
x^2+y^2+z^2 x y z 1
+14 +1 +2 +3 +1
+6 -1 +2 +1 +1
+2 +1 +0 +1 +1
+6 +1 +2 -1 +1
The equation of the sphere :
+16(x^2+y^2+Z^2) -32x -64y -32z +32 = 0
Verify the result :
With x= +1.0 y= +2.0 z= +3.0 eq=+0.00000
With x= -1.0 y= +2.0 z= +1.0 eq=+0.00000
With x= +1.0 y= +0.0 z= +1.0 eq=+0.00000
With x= +1.0 y= +2.0 z= -1.0 eq=+0.00000
Press return to continue.