Les cartes graphiques/La hiérarchie mémoire d'un GPU

Un livre de Wikilivres.

Dans ce chapitre, nous allons voir comment est organisée la mémoire d'un GPU, ou plutôt devrait-on dire les mémoires d'un GPU. Eh oui : un GPU contient beaucoup de mémoires différentes. La hiérarchie mémoire des GPUs est assez particulière, que ce soit au niveau des caches ou de la mémoire, parfois des registres. Un GPU contient évidemment une mémoire vidéo, de grande taille, capable de stocker textures, vertices, images et bien d'autres choses nécessaires pour un rendu 3D. On y trouve souvent des mémoires caches dédiées aux textures ou aux vertices, et les GPUs récents contiennent aussi des caches tout court. Mais sur les cartes graphiques récentes, les caches sont complétés par des Local Store, des mémoires RAM qui servent de cache, mais fonctionnent comme des mémoires RAM normales.

La mémoire vidéo[modifier | modifier le wikicode]

La mémoire vidéo est nécessaire pour stocker l'image à afficher à l'écran, mais aussi pour mémoriser temporairement des informations importantes. Dans le cas le plus simple, elle sert simplement de Framebuffer : elle stocke l'image à afficher à l'écran. Au fil du temps, elle s'est vu ajouter d'autres fonctions, comme stocker les textures et les sommets de l'image à calculer, ainsi que divers résultats temporaires.

La plupart des cartes graphiques sont des cartes graphiques branchées sur des connecteurs/ports de la carte mère. Ce sont des cartes graphiques dites dédiées, opposées à celles intégrées dans les processeurs modernes. Elles disposent de leur propre mémoire rien qu'à elles. Elles disposent actuellement de plusieurs gigas-octets de RAM, qu'elles peuvent utiliser à leur guise.

Mémoire vidéo des cartes graphiques dédiées.

Beaucoup d'ordinateurs modernes ont une carte graphique intégrée au processeur, appelée carte graphique intégrée, ou encore IGP (Integrated Graphic Processor). Et ces IGP utilisent une partie de la mémoire RAM de l'ordinateur comme mémoire vidéo. On parle alors de mémoire unifiée, sous-entendu que l'on a unifié la mémoire vidéo et la mémoire système (la RAM). Il en est de même sur certaines consoles, où la RAM est partagée entre le processeur et la carte vidéo. Là, la carte graphique n'est pas intégrée au processeur : les deux sont dans des circuits séparés, soudés sur la carte mère, qu'on peut facilement repérer à l’œil nu. Mais les deux composants se partagent la mémoire RAM, même s'ils sont séparés. C'est notamment le cas sur la Nintendo 64, pour ne citer qu'elle, et sur d'autres consoles de jeu anciennes.

Mémoire unifiée CPU-GPU.

Il existe quelques cartes graphiques hybrides, qui mélangent les deux solutions précédentes. Ce sont généralement des cartes graphiques dédiées, mais qui peuvent réserver une partie de la mémoire système suivant leurs besoins. Typiquement, elles utilisent leur mémoire vidéo, mais peuvent déborder sur la mémoire système si jamais celle-ci est pleine. Les anciennes cartes graphique pouvaient lire ou écrire directement dans la mémoire RAM, grâce à certaines fonctionnalités du bus AGP. Il en est de même pour certaines cartes graphiques bas de gamme, qui peuvent accéder à certaines portions de la mémoire RAM grâce à des technologies adaptées, comme le TurboCache de NVIDIA ou l'HyperMemory d'AMD. Les performances sont alors inférieures à celles obtenues avec une carte graphique équivalente mais avec plus de mémoire vidéo. Dans un autre registre, toutes les cartes vidéos modernes, mêmes celles à haute performance, utilisent une technologie similaire. Elle n'utilisent la RAM système qu'en dernier recours, soit quand la mémoire vidéo est quasiment pleine, soit pour faciliter les échanges de données avec le processeur. C'est typiquement le pilote de la carte graphique qui décide ce qui va dans la mémoire vidéo et la mémoire système, et il fait au mieux de manière à avoir les performances optimales.

Le partage de la capacité mémoire[modifier | modifier le wikicode]

On pourrait croire qu'un IGP a un désavantage en termes de mémoire vidéo. Entre avoir 16 gigas de RAM pour le processeur et 4 gigas pour la carte graphique, et seulement 16 gigas pour les deux, le choix est vite fait. Ceci dit, cette comparaison se fait à quantité de RAM système égale, ce qui n'a pas le même prix. En clair, ce désavantage peut se compenser en ajoutant de la RAM à l'ordinateur, ce qui n'est pas forcément plus cher. La RAM vidéo a un prix, après tout. Et surtout, ces comparaisons sont quelque peu biaisées par la manière dont l'IGP utilise la mémoire vidéo.

Sur les ordinateurs assez anciens, de plus d’une décennie, la quantité de mémoire vidéo disponible pour l'IGP est généralement réglable avec un réglage dans le BIOS. On peut ainsi choisir d'allouer 64, 128 ou 256 mégaoctets de mémoire pour la carte vidéo, sur un ordinateur avec 4 gigaoctets de RAM. L'interprétation de ce réglage varie grandement selon les cartes mères ou l'IGP. Pour certains, ce réglage implique que la RAM sélectionnée est réservée uniquement à la carte graphique, même si elle n'en utilise qu'une partie. Dans ce cas, les réglages disponibles sont généralement limités, et la RAM allouée à la carte graphique est petite. Les concepteurs de carte mère ne veulent pas qu'une trop quantité de RAM soit perdu et inutilisable pour les applications. Donc ils brident la carte vidéo et ne lui allouent que peu de RAM. La répartition entre mémoire vidéo et système est alors statique, fixée une fois pour toute. Il en est de même sur les anciennes cartes graphiques dédiées : elles ont accès à leur mémoire vidéo et c'est tout, la taille de la mémoire utilisable par la carte graphique est fixe.

Heureusement, les IGP actuels sont plus souples, de même que les GPU des consoles de jeu à mémoire unifiée. Les IGP modernes fournissent deux réglages : une quantité de RAM minimale, totalement dédiée à l'IGP, et une quantité de RAM maximale que l'IGP ne peut pas dépasser. Par exemple, il est possible de régler l'IGP de manière à ce qu'il ait 64 mégaoctets rien que pour lui, mais qu'il puisse avoir accès à maximum 1 gigaoctet si il en a besoin. Cela fait au total 960 mégaoctets (1024-64) qui peut être alloués au choix à la carte graphique ou au reste des programmes en cours d’exécution, selon les besoins. Il est possible d'allouer de grandes quantités de RAM à l'IGP, parfois la totalité de la mémoire système. Les cartes graphiques dédiées modernes utilisent une technique similaire, comme dit plus haut. Elles disposent d'une mémoire dédiée conséquente, mais peuvent déborder sur la mémoire système si le besoin s'en fait sentir. La répartition de la mémoire est alors dynamique.

Pour résumer, les cartes graphiques anciennes avaient une répartition entre mémoire système et mémoire vidéo qui était fixe, rigide. C'était le cas sur les anciennes cartes dédiées, incapables d’accéder à la RAM système, ainsi que sur les IGP anciens, où la mémoire vidéo était fixée dans le BIOS en mode tout ou rien. Mais sur les cartes graphiques modernes, le partage entre mémoire vidéo et système est dynamique, adapté aux besoins du processeur et du GPU. Les cartes graphiques dédiées peuvent déborder sur la mémoire système si besoin, les IGP ont une mémoire vidéo extensible entre un minimum et un maximum, etc. Certes, cette organisation est un défaut sur les PC avec peu de RAM qui n'en ont pas assez pour servir à la fois les programmes et l'IGP, mais elle marche très bien sur les PC avec beaucoup de RAM. Au final, la répartition statique et la répartition dynamique sont deux méthodes différentes, avec des avantages et des inconvénients variés, dont on ne peut pas dire laquelle est supérieure. Tout est une question de compromis

Répartition de la mémoire entre RAM système et carte graphique

Mais n'allez pas croire que la mémoire unifiée est parfaite. Pour de nombreux joueurs de jeux vidéos ou pour les applications très gourmandes en rendu graphique, la mémoire unifiée est un jeu qui n'en vaut pas vraiment la chandelle, en raison des autres désavantages qui vont suivre.

La bande passante de la mémoire vidéo[modifier | modifier le wikicode]

Sur les cartes graphiques dédiées, la mémoire vidéo est très proche des mémoires RAM qu'on trouve sous forme de barrettes dans nos PC, à quelques différences près. Le point le plus important est que la mémoire vidéo d'une carte dédiée n'est pas présente sous la forme de barrettes de mémoire. À la place, les puces de mémoire sont soudées sur la puce. La conséquence est que l'on ne peut pas upgrader la RAM d'une carte vidéo. Ce serait sympathique, mais ne serait pas d'une grande utilité, car les jeux vidéos gourmands en mémoire vidéo sont aussi gourmands en puissance de calcul. Upgrader la RAM d'une carte graphique ne sert à rien si celle-ci n'a pas assez de puissance pour jouer à des jeux récents avec un framerate convenable.

Le fait que la mémoire est soudée simplifie la conception de la carte graphique, mais cela a des avantages au niveau électrique, qui permettent d'améliorer les performances. Niveau performances, la mémoire vidéo a des performances radicalement différentes de la RAM des PC. Elle a un temps d'accès très long, de plusieurs centaines de cycles d'horloge. Cela a des conséquences sur l'architecture de la carte graphique, notamment au niveau des processeurs de shaders, qui sont conçus pour gérer ces temps d'accès long, comme on l'a vu dans le précédent chapitre. Par contre, elle a un très grand débit, autrement dit une bande passante élevée, proche de la centaine de gigaoctets par secondes sur les cartes graphiques modernes. Pour rappel, la bande passante d'une mémoire dépend de deux paramètres : sa fréquence, et la largueur de son bus mémoire. Détaillons le dernier, qui explique en grande partie pourquoi la mémoire vidéo a un débit supérieur à la mémoire système.

Le bus mémoire est ce qui connecte la mémoire au reste de la carte graphique. La largueur de ce bus n'est autre que la quantité de données que celui-ci peut transmettre à chaque cycle d'horloge, le nombre de bits que l'on peut lire/écrire en un cycle d'horloge. Sur la RAM système, le bus est de 64 bits sur les mémoires DDR modernes, mais peut monter à 128 bits en utilisant des techniques comme le dual channel, voire en 192/256 bits avec des techniques de triple/quad channel qui sont rarement utilisées. Globalement, la configuration classique sur un PC moderne est 128 bits, avec quelques machines bas de gamme en 64 bits. Sur les cartes graphiques modernes, les bus de 128 bits ou moins sont utilisés sur les cartes graphiques de faible performance, le reste ayant un bus mémoire de 192, 256, 384, voire 512 bits. En clair, elles permettent de lire/écrire plus de données par cycle d'horloge qu'une RAM système, de 2 à 8 fois plus.

Le fait que le bus est plus large est lié au fait que les puces mémoires sont soudées. La mémoire vidéo des cartes dédiées est composée de pleins de puces mémoires accessibles en parallèle, ce qui permet de charger des blocs de plusieurs centaines d'octets en une seule fois. Les barrettes de mémoire ont des limites au nombres de broches que leur connecteur peut accepter, qui est proche de 300 pour les DDR actuelles (beaucoup de ces broches ne transfèrent pas des données, ce qui fait qu'on a bien 64 broches dédiées aux données seulement). Sans connecteurs, on est limité à ce que la puce du GPU peut accepter, et on est alors entre 4000 à 6000 broches sur les sockets de CPU ou de GPU actuels.

Puces mémoires d'un GPU et d'une barrette de mémoire.

Tout cela nous dit qu'avec une mémoire unifiée, la bande passante de la RAM est plus faible. On a dit plus haut que sur les cartes graphiques dédiées, la RAM a un débit proche de la centaine de gigaoctets par secondes. Avec une carte graphique intégrée, vous pouvez facilement diviser cette estimation par 10. De plus, le débit de la RAM est à partager entre la carte graphique et le processeur, ce qui réduit encore les performances. Et ce partage n'est pas chose facile. Les deux se marchent sur les pieds et entrent en conflit pour l'accès à la RAM. La carte graphique doit parfois attendre que le processeur lui laisser l'accès à la RAM et inversement. Divers circuits d'arbitrage s'occupent de répartir équitablement les accès à RAM entre les deux, mais cela ne permet que d'avoir un compromis imparfait qui peut réduire les performances. Le seul moyen pour réduire la casse est d'ajouter des mémoires caches entre le GPU et la RAM, le processeur ayant déjà beaucoup de caches lui-même. Mais l'efficacité des caches est relativement limitée pour le rendu 3D et ne donne pas des résultats vraiment spectaculaires.

Les échanges entre processeur et mémoire vidéo[modifier | modifier le wikicode]

Quand on charge un niveau de jeux vidéo, on doit notamment charger la scène, les textures, et d'autres choses dans la mémoire RAM, puis les envoyer à la carte graphique. Ce processus se fait d'une manière fortement différente selon que l'on a une mémoire unifiée ou une mémoire vidéo dédiée.

Avec la mémoire unifié, les échanges de données entre processeur et carte graphique sont fortement simplifiés et aucune copie n'est nécessaire. La carte vidéo peut y accéder directement, en lisant leur position initiale en RAM. Une partie de la RAM est visible seulement pour le CPU, une autre seulement pour le GPU, le reste est partagé. Les échanges de données entre CPU et GPU se font en écrivant ou lisant des données dans cette RAM partagée, voire en écrivant directement dans la mémoire dédiée au GPU, qui est accessible par le processeur sous conditions, par l'intermédiaire du pilote de périphérique. Pas besoin de faire de copie d'une mémoire à une autre : la donnée a juste besoin d'être placée au bon endroit. Le chargement des textures, du tampon de commandes ou d'autres données du genre, est donc très rapide, presque instantané.

Échanges de données entre CPU et GPU avec une mémoire unifiée

Avec une mémoire vidéo dédiée, on doit copier ces données dans la mémoire vidéo pour le rendu, ce qui implique des transferts de données passant par le bus PCI-Express. Les échanges entre processeur et carte graphique dédiée impliquent des transferts de données entre mémoire système et mémoire vidéo, qui passent par le bus. La mémoire vidéo a accès à une partie de la RAM système, ce qui a son utilité, comme on le verra dans ce qui suit. Et inversement, le processeur a accès à une partie de la mémoire vidéo, dans laquelle il peut lire ou écrire comme bon lui semble. Le reste de la mémoire vidéo est invisible du point de vue du processeur, mais manipulable par le GPU à sa guise. Il est possible pour le CPU de copier des données dans la portion invisible de la mémoire vidéo, mais cela se fait de manière indirecte en passant par le GPU d'abord. Il faut typiquement envoyer une commande spéciale au GPU, pour lui dire de charger une texture en mémoire vidéo, par exemple. Le GPU effectue alors une copie de la mémoire système vers la mémoire vidéo, en utilisant un contrôleur DMA intégré au GPU. Pour résumer, tout se passe comme si la mémoire partagée entre CPU et GPU était coupée en deux : une portion sur le GPU et une autre dans la RAM système.

Échanges de données entre CPU et GPU avec une mémoire vidéo dédiée

La gestion de la mémoire vidéo est prise en charge par le pilote de la carte graphique, sur le processeur. Elle a tendance à allouer les textures et d'autres données de grande taille dans la mémoire vidéo invisible, le reste étant placé ailleurs. Les copies DMA vers la mémoire vidéo invisible sont adaptées à des copies de grosses données comme les textures, mais elles marchent mal pour des données assez petites. Or, les jeux vidéos ont tendance à générer à la volée de nombreuses données de petite taille, qu'il faut copier en mémoire vidéo. Et c'est sans compter sur des ressources du pilote de périphériques, qui doivent être copiées en mémoire vidéo, comme le tampon de commande ou d'autres ressources. Et celles-ci ne peuvent pas forcément être copiées dans la mémoire vidéo invisible. Si la mémoire vidéo visible par le CPU est trop petite, les données précédentes sont copiées dans la mémoire visible par le CPU, en mémoire système, mais leur accès par le GPU est alors très lent. Aussi, plus la portion visible de la mémoire vidéo est grande, plus simple est la gestion de la mémoire vidéo par le pilote graphique. Et de ce point de vue, les choses ont évolué récemment.

Pour accéder à un périphérique PCI-Express, il faut configurer des registres spécialisés, appelés les Base Address Registers (BARs). La configuration des registres précise quelle portion de mémoire vidéo est adressable par le processeur, quelle est sa taille, sa position en mémoire vidéo, etc. Avant 2008, les BAR permettaient d’accéder à seulement 256 mégaoctets, pas plus. La gestion de la mémoire vidéo était alors difficile. Les échanges entre portion visible et invisible de la mémoire vidéo étaient complexes, demandaient d’exécuter des commandes spécifiques au GPU et autres. Après 2008, la spécification du PCI-Express ajouta un support de la technologie resizable bar, qui permet au processeur d’accéder directement à plus de 256 mégaoctets de mémoire vidéo, voire à la totalité de la mémoire vidéo. De nombreux fabricants de cartes graphiques commencent à incorporer cette technologie, qui demande quelques changements au niveau du système d'exploitation, des pilotes de périphériques et du matériel.

Les caches d'un GPU[modifier | modifier le wikicode]

Les cartes graphiques sont censées avoir peu de caches. Les caches en question sont des caches spécialisés pour les textures ou pour les sommets, ce qui leur vaut les noms de caches de texture et de cache de sommets. Il n'existe pas beaucoup d'autres caches sur les anciennes cartes graphiques, l'usage de caches plus complexes n'étant pas vraiment utile sur les cartes graphiques. Ce n'est que par la suite, quand les GPU commencèrent à être utilisés pour du calcul généraliste (scientifique, notamment), que la situation changea. Les GPU utilisèrent alors de plus en plus de caches généralistes.

Le cache de textures[modifier | modifier le wikicode]

Le cache de textures, comme son nom l'indique, est un cache spécialisé dans les textures. Pour améliorer les performances, les cartes graphiques actuelles disposent généralement de plusieurs caches de textures. Déjà, toutes les cartes graphiques modernes disposent de plusieurs unités de texture, mais elles ne se partagent pas un seul cache. Faire ainsi compliquerait beaucoup trop les GPU et n'aurait aucun intérêt. A la place, chaque unité de texture dispose de son ou ses propres caches de textures.

De plus, les cartes graphiques modernes ont plusieurs caches de texture par unité de texture. Généralement, elles ont deux caches de textures : un petit cache rapide, et un gros cache lent. Les deux caches sont fortement différents. L'un est un gros cache, qui fait dans les 4 kibioctets, et l'autre est un petit cache, faisant souvent moins d'1 kibioctet. Mais le premier est plus lent que le second. Sur d'autres cartes graphiques récentes, on trouve plus de 2 caches de textures, organisés en une hiérarchie de caches de textures similaire à la hiérarchie de cache L1, L2, L3 des processeurs modernes.

Notons que ce cache interagit avec les techniques de compression de texture. Les textures sont en effet des images, qui sont donc compressées. Et elles restent compressées en mémoire vidéo, car les textures décompressées prennent beaucoup plus de place, entre 5 à 8 fois plus. Les textures sont décompressées lors des lectures : le processeur de shaders charge quelques octets, les décompresse, et utilise les données décompressées ensuite. Le cache s'introduit quelque part avant ou après la décompression. On peut décompresser les textures avant de les placer dans le cache, ou laisser les textures compressées dans le cache. Tout est une question de compromis. Décompresser les textures dans le cache fait que la lecture dans le cache est plus rapide, car elle n'implique pas de décompression, mais le cache contient moins de données. A l'inverse, compresser les textures permet de charger plus de données dans le cache, mais rend les lectures légèrement plus lentes. C'est souvent la seconde solution qui est utilisée et ce pour deux raisons. Premièrement, la compression de texture est terriblement efficace, souvent capable de diviser par 6 la taille d'une texture, ce qui augmente drastiquement la taille effective du cache. Deuxièmement, les circuits de décompression sont généralement très rapides, très simples, et n'ajoutent que 1 à 3 cycles d'horloge lors d'une lecture.

Les anciens jeux vidéo ne faisaient que lire les textures, sans les modifier. Aussi, le cache de texture des cartes graphiques anciennes est seulement accessible en lecture, pas en écriture. Cela simplifiait fortement les circuits du cache, réduisant le nombre de transistors utilisés par le cache, réduisant sa consommation énergétique, augmentait sa rapidité, etc. Mais les jeux vidéos 3D récents utilisent des techniques dites de render-to-texture, qui permettent de calculer certaines données et à les écrire en mémoire vidéo pour une utilisation ultérieure. Les textures peuvent donc être modifiées et cela se marie mal avec un cache en lecture seule. Rendre le cache de texture accessible en écriture est une solution, mais qui demande d'ajouter beaucoup de circuits pour une utilisation somme toute peu fréquente. Une autre solution, plus adaptée, réinitialise le cache de textures quand on modifie une texture, que ce soit totalement ou partiellement. Une fois le cache vidé, les accès mémoire ultérieurs n'ont pas d'autre choix que d'aller lire la texture en mémoire et de remplir le cache avec les données chargées depuis la RAM. Les données de texture en RAM étant les bonnes, cela garantit l’absence d'erreur.

Ces deux techniques peuvent être adaptées dans le cas où plusieurs caches de textures séparées existent sur une même carte graphique. Les écritures doivent invalider toutes les copies dans tous les caches de texture. Cela nécessite d'ajouter des circuits qui propagent l'invalidation dans tous les autres caches.

Les caches généralistes[modifier | modifier le wikicode]

La hiérarchie mémoire des GPU modernes ressemble de plus en plus à celle des CPU, avec toute une hiérarchie de caches, avec des caches L1, L2, L3, etc. Pour rappel, les processeurs multicœurs modernes ont pleins de mémoires cache, avec au minimum deux niveaux de cache, le plus souvent trois. Les trois niveaux de cache sont appelés les caches L1, L2 et L3. Pour le premier niveau, on trouve deux caches spécialisés par cœur/processeur : un cache pour les instructions et un cache pour les données. Pour le second niveau, on a un cache L2 par cœur/processeur, qui peut stocker indifféremment données et instructions. Le cache L3 est un cache partagé entre tous les cœurs/processeurs. Les GPU ont une organisation similaire, sauf que le nombre de cœurs est beaucoup plus grand que sur un processeur moderne.

Les caches d'instruction des GPU sont adaptés aux contraintes du rendu 3D. Le principe du rendu 3D est d'appliquer un shader assez simple sur un grand nombre de données, alors que les programmes généralistes effectuent un grand nombre d'instructions sur une quantité limitée de données. La première caractéristique est que les shaders sont des programmes assez légers, qui ont peu d'instructions. Les caches d'instructions L1 sont généralement assez petits, plus que pour les CPU, généralement quelques dizaines ou centaines de kiloctets. Et même malgré cela, il n'est pas rare qu'un shader tienne tout entier dans le cache d'instruction, alors qu'une telle situation serait impensable sur un processeur généraliste. La seconde caractéristique est qu'un même programme s’exécute sur beaucoup de données. Il n'est pas rare que plusieurs processeurs de shaders exécutent le même shader. Aussi, certains GPU partagent un même cache d’instruction entre plusieurs processeurs de shader, comme c'est le cas sur les GPU AMD d'architecture GCN où un cache d'instruction de 32 kB est partagé entre 4 cœurs.

Pour les caches de données, il faut savoir qu'un shader a peu de chances de réutiliser une donnée qu'il a chargé précédemment. Il faut dire que les processeurs de shaders ont beaucoup de registres, et que ceux-ci peuvent contenir un grand nombre de données. Aussi, si accès ultérieur à une donnée il doit y avoir, elle passe généralement par les registres. Cette faible réutilisation fait que les caches de données ne sont pas censé être très utiles. Mais le fait est qu'un shader s’exécute en un grand nombre d'instances, chacune traitant un paquet de données différent. Il est très fréquent que différentes instances s’exécutent chacune sur un même cœur et ces différentes instances tendent à accéder à des données très proches, voire à des données identiques. Si un shader charge une donnée dans le cache, la donnée et ses voisines sont alors disponibles pour les autres instances. Le cas le plus classique est celui de l'accès aux textures : lors du placage de textures, des pixels contiguës accèderont à des texels contiguës. Et outre les textures, les pixels shaders ont tendance à traiter des pixels proches, donc à avoir besoin de données proches en mémoire. Ce qui fait que les caches de données sont quand même utiles.

Dans le même registre, un shader a besoin de certaines informations spécifiques, généralement constantes, pour faire son travail. Toutes les instances du shader manipulent ces données, elles ont besoin de les lire, pour les utiliser lors de l’exécution, les copier dans des registres, etc. Les GPU incorporent des caches de constantes pour accélérer l'accès à ces données. Ainsi, quand un shader lit une donnée, elle est chargée dans le cache de constante, ce qui fait que les futures instances auront accès à celle-ci dans le cache. Ces caches de constante sont séparés des autres caches de données pour une raison bien précise : les constantes en question sont d'accès peu fréquent. Généralement, on a un accès au début de chaque instance de shader, guère plus. Vu que ce sont des données peu fréquemment utilisées, elles sont censée être évincées en priorité du cache de données, qui privilégie les données fréquemment lues/écrites. Avec un cache séparé, on n'a pas ce problème. Au passage, ce cache de constante a des chances d'être partagé entre plusieurs cœurs, des cœurs différents ayant de fortes chances d’exécuter des instances différentes d'un même shader.

Il faut noter que sur la plupart des cartes graphiques modernes, les caches de données et le cache de texture sont un seul et même cache. Même chose pour le cache de sommets, utilisé par les unités géométrique, qui est fusionné avec les caches de données. La raison est que une économie de circuits qui ne coute pas grand chose en termes de performance. Rappelons que les processeurs de shaders sont unifiés à l'heure actuelle, c'est à dire qu'elles peuvent exécuter pixel shader et vertex shader. En théorie, chaque unité de shader devrait incorporer un cache de sommets et un cache de textures. Mais le processeur de shader exécute soit un pixel shader, soit un vertex shader, mais pas les deux en même temps. Donc, autant utiliser un seul cache, qui sert alternativement de cache de vertex et de cache de texture, afin d'économiser des circuits. Une fois les deux fusionnés, on obtient un cache de donnée généraliste, capable de traiter sommets et pixels, voire d'autres données. La seule difficulté tient au filtrage de textures et à sa décompression, mais cela demande juste de router les données lues vers l'unité de texture ou directement vers les registres/unités de calcul, ce qui est facile à faire.

La cohérence des caches sur un GPU[modifier | modifier le wikicode]

Une carte graphique moderne est, pour simplifier, un gros processeur multicœurs. Dans les grandes lignes, si on omet les circuits spécialisés pour le rendu 3D comme les circuits de la rastérisation ou les unité de textures, c'est une définition parfaite. La différence est que les GPU ont un très grand nombre de cœurs, bien supérieur aux misérables 4 à 16 cœurs d'un CPU. Par contre, cela signifie que les problèmes rencontrés sur les processeurs multicœurs sont aussi présents sur les GPU. Le principal est ce qu'on appelle la cohérence des caches. Pour comprendre à quoi cela fait référence, il faut faire un rappel sur les caches d'un processeur multicœurs.

Un processeur multicœurs dispose de beaucoup de caches. Certains sont des caches dédiés, c'est à dire qu'ils sont reliés à un seul cœur, pas aux autres. D'autres sont des caches partagés entre plusieurs cœurs, voire entre tous les cœurs de la puce. Les GPU contiennent les deux, comme les CPU multicœurs, avec cependant des différences. La règle, valable pour les CPU et GPU, est que les caches de plus haut niveau (L1, parfois L2) sont dédiés à un cœur, alors que les caches de plus bas niveau (L2, L3) sont partagés entre plusieurs cœurs, voire tous. Typiquement, on a des caches L1 dédiés, des caches L2 partagés entre plusieurs cœurs, et un cache L3 partagé entre tous les cœurs. Mais cette règle est parfois violée, notamment sur les GPU. Sur les CPU multicœurs, les caches L1, de données et d'instruction, sont dédiés à un cœur. Et autant c'est le cas sur la plupart des GPU, ont a vu plus haut que certains GPU partagent leur cache L1 d’instructions.

Le fait que certains caches soient dédiés ou partagés entre un nombre limité de cœurs entraine des problèmes. Prenons deux processeurs qui ont chacun une copie d'une donnée dans leur cache. Si un processeur modifie sa copie de la donnée, l'autre ne sera pas mise à jour. L'autre processeur manipule donc une donnée périmée : il n'y a pas cohérence des caches. Pour corriger ce problème, les ingénieurs ont inventé des protocoles de cohérence des caches pour détecter les données périmées et les mettre à jour. Il existe beaucoup de protocoles de cohérence des caches et la plupart utilisent des techniques dites d'espionnage du bus où chaque cache étudie ce qui se passe sur le bus mémoire. Mais autant ces techniques sont faisables avec un nombre limité de cœurs, autant elles sont impraticables avec une centaine de coeurs. Les GPU doivent donc limiter la cohérence des caches à un niveau praticable.

Cohérence des caches

En pratique, les caches d'un GPU sont gardés incohérents et aucun protocole de cache de cache n'est utilisé. Et ce n'est pas un problème, car le rendu 3D implique un parallélisme de donnée : des processeurs/cœurs différents sont censés travailler sur des données différentes. Il est donc rare qu'une donnée soit traitée en parallèle par plusieurs cœurs, et donc qu'elle soit copiée dans plusieurs caches. La cohérence des caches est donc un problème bien moins important sur les GPU que sur les CPU. En conséquence, les GPU se contentent d'une cohérence des caches assez light, gérée par le programmeur. Si jamais une opération peut mener à un problème de cohérence des caches, le programmeur doit gérer cette situation de lui-même.

Pour cela, les GPU supportent des instructions machines spécialisées, qui vident les caches. Par vider les caches, on veut dire que leur contenu est rapatrié en mémoire RAM, et qu'ils sont réinitialisé. Les accès mémoire qui suivront l'invalidation trouveront un cache vide, et devront recharger leurs données depuis la RAM. Ainsi, si une lecture/écriture peut mener à un défaut de cohérence problématique, le programmeur doit insérer une instruction pour invalider le cache dans son programme avant de faire l'accès mémoire potentiellement problématique. Ainsi, on garantit que la donnée chargée/écrite est lue depuis la mémoire vidéo, donc qu'il s'agit d'une donnée correcte. Nous avons vu plus haut que c'est cette technique qui est utilisée pour les caches de textures. Ce cas est assez particulier car les textures sont censées être accédée en lecture uniquement, sauf dans de rares cas de techniques de render-to-texture. Aussi, ce modèle d'invalidation du cache au besoin est parfaitement adapté. Les autres caches spécialisés fonctionnent sur le même principe. Même chose pour les caches généralistes, bien que certains GPU modernes commencent à implémenter des méthodes plus élaborées de cohérence des caches.

Les local stores[modifier | modifier le wikicode]

En plus d'utiliser des caches, les processeurs de la carte graphique utilisent des local stores, des mémoires RAM intermédiaires entre la RAM principale et les caches/registres. Typiquement, chaque processeur de flux possède sa propre mémoire locale. Ces local stores peuvent être vus comme des caches, mais que le programmeur doit gérer manuellement.

Local stores d'un GPU.

La faible capacité de ces mémoires, tout du moins comparé à la grande taille de la mémoire vidéo, les rend utile pour stocker temporairement des résultats de calcul "peu imposants". L'utilité principale est donc de réduire le trafic avec la mémoire centrale, les écritures de résultats temporaires étant redirigés vers les local stores. Ils sont surtout utilisé hors du rendu 3D, pour les applications de type GPGPU, où le GPU est utilisé comme architecture multicœurs pour du calcul scientifique.

Les cartes graphiques très récentes fusionnent les local stores avec le cache L1. L'avantage est une économie de transistors assez importante. De plus, cette technologie permet de partitionner le cache/local store suivant les besoins. Par exemple, si la moitié du local store est utilisé, l'autre moitié peut servir de cache L1. Si le local store n'est pas utilisé, comme c'est le cas pour la majorité des rendu 3D, le cache/local store est utilisé intégralement comme cache L1.