Utilisateur:Goelette Cardabela/Livres en versions imprimables/L'hélice marine et la thermodynamique

Un livre de Wikilivres.
Sauter à la navigation Sauter à la recherche


n'imprimez pas cette première page ni la dernière

Imprimez à partir de la deuxième page pour bien coller avec le sommaire du livret.

Remerciements

Ce wiki-livre est un ouvrage collaboratif

Il a été initié par l'utilisateur Goelette Cardabela en 2006 et augmenté, arrangé, corrigé en collaboration avec des volontaires.

Merci
à tous les wikipédiens volontaires
aux patrouilleurs JackPotte et Jean-Jacques MILAN pour leur collaboration, pour les conseils et les corrections.
aux auteurs d'images
notamment au Dr. Dwayne Meadows, NOAA/NMFS/OPR, pour l'image de couverture du livre.
aux amis, à ma famille
à Marie Claude Thomas pour les corrections, la syntaxe les conseils.
à nos professeurs
Merci aux professeurs Alfred Kastler et René Lucas et à leurs assistants pour leur enseignement de la thermodynamique et la mécanique physique.
Merci aussi aux professeurs R. Ouziaux et J. Perrier pour leur enseignement de la mécanique des fluides appliquée.

Contenus

Cette version imprimable est un recueil d'articles et de pages publiées sur wiki-livres entre les années 2006 et 2016 
Préambule - Hommage à nos savants et à nos professeurs.
Discussion:Hélice - Discussion sur l’opportunité de penser moderne.
Hélice - exposé de la théorie et le point de vue thermodynamique.
Livres concernant l'hélice marine.jpg


Préambule

Dans les années 70, alors que je traçais les plans de la goélette Cardabela j'ai été confronté au calcul de la propulsion par hélices.

Les fabricants d'hélices me proposaient des versions très différentes en pas et en diamètre. J'ai alors tenté d'en savoir plus.

Dans les éditions QUILLET des années 60 on proposait des formules tarabiscotées avec des variables à puissances fractionnaires. Ces calculs étaient très probablement obtenus à partir des formules de MOROSI et BIDONE qui ont étudié les percussions de l'eau[1] au cours du dix-neuvième siècle. Ces études avaient conduit les auteurs à proposer des formules avec des exposants fractionnaires.

Toujours dans les années 70 paraissait une revue destinée essentiellement aux constructeurs de bateau en amateur. Un numéro spécial était paru avec pour sujets les moteurs et le calcul des hélices, avec des abaques. Il y a eu aussi, ces mêmes années, des abaques proposés par la société VETUS. Rien ne collait vraiment bien avec ce que me proposait le correspondant local pour les hélice RADICE

Lorsque j'ai voulu en savoir plus je me suis souvenu des cours de mécanique physique et de thermodynamique. Les assistants des professeurs LUCAS[2] et KASTLER[3] étaient très compétents et nous avaient bien inculqué ces notions, entre autres, de mécanique Newtonienne et de mécanique statistique de BOLTZMANN [4].

Voila; la suite est dans ces pages d'abord publiées et mal perçues dans Wikipédia; le sujet paraissait farfelu et de peu de consistance pour une encyclopédie. Il en reste une trace dans la page de Discussion:Hélice sur Wikipedia.[5] J'ai justifié cette théorie dans l'article Hélice marine de Wikipédia, par des apports historiques partiellement repris dans ce wiki-livre.

Cent ans après les publications de A. EINSTEIN[6] et le décès de L. BOLTZMANN je ne pouvais pas ne pas en parler un peu. Ils ont fait avancer la science à pas de géant grâce à leurs manières de penser. Ils ont été pris pour des fous par leurs pairs bien souvent incapables de comprendre ces nouvelles théories; EINSTEIN s'en est moqué, et BOLTZMANN s'est suicidé. Ne manquez pas de lire Sept brèves leçons de physique de Carlos Rovelli[7]


Exemple de formule avec des exposants fractionnaires [8]
Pas = 2,48 . D . V0,928/P0,186/Nt0,374
D:diamètre en pouces
V:vitesse max du navire en nœuds
P:Puissance sur l'arbre en chevaux
Nt:Vitesse de rotation de l'hélice en tours par minute
Cardabela (discussion) 20 janvier 2017 à 11:41 (CET)
Références
  1. https://fr.wikipedia.org/wiki/Hélice_marine#Histoire
  2. https://fr.wikipedia.org/wiki/René_Lucas
  3. https://fr.wikipedia.org/wiki/Alfred_Kastler
  4. https://fr.wikipedia.org/wiki/Ludwig_Boltzmann
  5. https://fr.wikipedia.org/wiki/Discussion:Hélice
  6. https://fr.wikipedia.org/wiki/Albert_Einstein
  7. Sept brèves leçons de physique : (ISBN 978-2-7381-3312-0)
  8. Site web de : jean.dahec.free.fr/25oct/calcul-helice.html

Discussion:Hélice

Sommaire de la page de discussion

 Hélices avant le XXe siècle
 Hélices au XXe siècle
   Liens externes
 Retour d'expérience
 Le recul de l'hélice marine
   L'évidence
   Notes
   Liens

  1. https://commons.wikimedia.org/wiki/File:Traité_de_l'hélice_propulsive-2p-1.jpg
  2. https://commons.wikimedia.org/wiki/File:Traité_de_l'hélice_propulsive-2p-2.JPG
  3. https://commons.wikimedia.org/wiki/File:Traité_de_l'hélice_propulsive-2p-3.JPG



Le titre Thermodynamique de l'hélice conviendrait mieux ...Cardabela 29 décembre 2010 à 17:35 (CET)

La discussion a commencé en mars 2006 sur wikipedia : Discussion:Hélice
Cardabela (discussion) 8 mars 2016 à 18:27 (CET)


Impimez la page Hélice, avec pour avant propos cette page de discussion, suivies de l'application aux navires à déplacement Cardabela (discussion) 23 décembre 2016 à 18:01 (CET)

Remerciements postumes

Merci aux professeurs Alfred Kastler et René Lucas et à leurs assistants pour leur enseignement de la thermodynamique et la mécanique physique. Merci aussi aux professeurs R. Ouziaux et J. Perrier pour leur enseignement de la mécanique des fluides appliquée.

--Cardabela 15 décembre 2010 à 19:25 (CET)


Hélices avant le XXe siècle

GodfreyKneller-IsaacNewton-1689

Le calcul de l'hélice marine est décrit dans la page Hélice de Wikilivre d'un point de vue macroscopique. On interprète globalement ce qui entre dans l'hélice et ce qui en sort, sans se préoccuper de ce qui se passe entre les deux, à proximité de l'hélice, de ses pales.

Les calculs des hélices, pas et diamètres, que nous décrivons auraient pu être réalisés dès la fin du XIXe siècle car les mathématiques de la mécanique physique que nous utilisons ont été établis aux XVIIe et XVIIIe siècle par Isaac Newton.

Cardabela (discussion) 7 mars 2016 à 13:00 (CET)

-

Hélices au XXe siècle

Oserons nous ?
Sommes nous prêts à voir les choses autrement ?

Au cours de ce siècle les physiciens et des philosophes ont complètement bouleversé les sciences et notre façon de penser. Au début du siècle l'humanité ne connaissait même pas les ondes radio, la radioactivité et les rayons X, on commençait à installer les générateurs électriques.

Aujourd'hui, oserons nous parler de l'espace-temps où la longueur de la quatrième dimension est le vecteur ; produit de la vitesse par le temps.
Morosi et Bidone seraient bien étonnés d'apprendre que la chute d'eau de leurs expériences était mue par cette quatrième dimension et non par une force mystérieuse telle que définie dans l'espace de Newton, de même pour la fameuse pomme de Newton qui suit un chemin semblable à la chute d'eau.
La terre tourne autour du soleil parce qu'elle va tout droit dans un espace courbe, comme une bille qui roule dans un entonnoir : il n'y a pas de forces mystérieuses générées par le centre de l'entonnoir, c'est la courbure des parois qui fait tourner la bille.[1]...

- La théorie d'attraction des masses[2] de Newton est la partie émergente compréhensible de l'espace-temps. Elle explique notre monde par la force d'attraction des masses, mais elle n'explique pas la déviation des photons, du flux lumineux, au voisinage des corps massiques. On cherche à relier les deux notions par de nouvelles théories telle la théorie des cordes aussi appelée théorie de la gravité quantique à boucle[3].
Cardabela (discussion) 28 mars 2017 à 11:10 (CEST)

Oserons nous faire part du mouvement brownien dans notre conception du fonctionnement de l'hélice propulsive ?

Oserons nous dire que le rendement et le recul, sont dus à une augmentation de l'entropie de l'Univers ?

- Les molécules d'eau qui traversent l'hélice sont dans un certain état vibratoire, en équilibre de collisions, très en amont de l'hélice; elles doivent retourner dans ce même état très en aval du flux. Il faut bien que cette énergie dispersée dans la mer ou la rivière se retrouve quelque part ... sous forme de chaleur ?
Cardabela (discussion) 10 mars 2016

Liens exernes

  1. Carlo Rovelli, Sept brèves leçons de physique, Odile Jacob (ISBN 978-2-7381-3312-0)
  2. https://fr.wikipedia.org/wiki/Loi_universelle_de_la_gravitation
  3. https://fr.wikipedia.org/wiki/Théorie_des_cordes



Retour d'expérience

Revenons les pieds sur terre.

Selon les retours d'expérience de la page de conclusions du wikilivre Hélices de navires à déplacement[1] : « Curieusement nous devons utiliser le même recul théorique dans deux expériences, une expérience avec un moteur de 50 chevaux et une autre avec un moteur de 75 chevaux, avec le même bateau, pour avoir des résultats cohérents avec les essais (recul = 0,27 ou 0,28)  »

Attention ; le recul défini ici s'entend lorsque le moteur est à sa puissance maximale pour une vitesse de bateau égale à la vitesse optimale de l'hélice.

Avec un moteur de 50 Ch 
Hélice 3 pales hélicoïdale 18x12
Moteur VETUS de 50 ch
Avec un moteur de 75 Ch 
Hélice 3 pales hélicoïdale 19x17
Moteur VOLVO de 75 ch
Tableau d'estimation des efforts pour le moteur VOLVO de 75 ch à 6,42 nd
Graphe d'estimation des efforts pour le moteur VOLVO de 75 ch à 6,42 nd

Dans les deux cas

  • Le rendement à la vitesse optimale d'hélice, par temps calme, se situe aux environs de 0,62; avec une perte d'énergie approximative d'un tiers de la puissance.
  • La consommation en carburant est à peu près la même pour la même vitesse de déplacement, avec des moteurs différents et des hélices différentes.

Cardabela (discussion) 10 mars 2016 à 19:25 (CET)

-

Le recul de l'hélice marine

On perçoit le recul de l'hélice comme un foirage du pas de l'hélice par rapport au pas de construction. On lui donne une valeur, un coefficient de foirage.

Dans la réalité, l'eau se précipite vers le vide créé par l'hélice. Les molécules d'eau subissent une dépression et la température partielle de l'eau diminue dans son flux. Cette dépression peut même atteindre une valeur très faible et provoquer la cavitation. La température d'ébullition de l'eau peut atteindre 10°C à 0,01 bar [2]

Au refoulement la surpression devient bien plus importante que la pression atmosphérique et la température partielle de l'eau augmente dans son flux. Par exemple; à deux atmosphères la température partielle peut augmenter de 20°C alors qu'à l'aspiration, à 0,5 atmosphère, la température peut baisser de 20°C, par rapport à la température locale de l'eau.

Le passage dans l'hélice provoque un désordre moléculaire avec une perte d'entropie[3]. Au final :

La variation de vitesse du flux dans l’hélice provoque une perte d'entropie qui se traduit par ce que nous nommons le recul

L'évidence

À force de chercher l'invisible on ne voit plus l'évidence. Savoir enlève de la magie; savoir pourquoi le ciel est bleu, pourquoi les vagues tournent autour des caps, etc.; heureusement on peut se recaler et, à nouveau apprécier la magie que nous offre la nature.

  • L'air chauffe quand on le comprime, il faut tremper les bouteilles de plongée dans l'eau froide lorsqu'on les remplit d'air.
  • L'air est plus froid en altitude parce que la pression y est plus faible; à Saint Martin Vésubie, à 1000 m d'altitude, la température est 6°C plus faible qu'à Nice.
  • Les climatiseurs et réfrigérateurs pompent l'énergie à basse pression et évacuent la chaleur à la compression du fluide frigorigène. Le système fonctionne en circuit fermé.

Dans ces exemples que tout le monde connaît ce sont des molécules en plus ou en moins forte agitation qui transmettent de l'énergie.

Notes

On ne peut pas dire que le recul est dû au seul désordre provoqué par le choc mécanique des molécules d'eau à leur passage dans l'hélice; le flux principal de l'eau n'entre quasiment pas en contact avec l'hélice car il se forme une couche d'eau plaquée aux pales qui permet la propulsion même avec une hélice légèrement salie ... Pas trop tout de même. On peut le vérifier en statique par l'observation de la vitesse de rotation de l'hélice en charge maximale; par exemple 2300 tours par minute après carénage et 2100 tours pour une hélice méritant d'être nettoyée, alors qu'à 2200 tours l'hélice semble bien sale mais est encore efficace. On peut aussi le vérifier avec un dynamomètre[4] reliant le quai au cul du bateau.

Cardabela (discussion) 20 octobre 2016 à 07:53 (CEST)

Liens

  1. https://fr.wikibooks.org/wiki/Hélices_de_navires_à_déplacement/Conclusions#Retour_d'expérience
  2. http://www.leguideits.fr/guides-its/dossiers--fiches-techniques/dossiers--fiches-techniques-6/v2-relation-pression-temper.pdf
  3. https://fr.wikipedia.org/wiki/Entropie_(thermodynamique)#Énergie_et_entropie
  4. Dynamomètre pouvant mesurer les poids jusqu'à 1000 kg pour un moteur de 75 ch

Erratum page 15 de la version imprimable

Cet erratum concerne les livret imprimables suivants :

  • L'hélice marine et la thermodynamique
  • L'hélice marine Théorie et application

Cette correction doit être effectuées pour toutes les versions imprimées entre le 13 janvier et le 13 juin 2017.


Puissance fournie par l'hélice

Pour les versions antérieures au 13 janvier 2017 nous avions la formule suivante :

  • P = F Vp = M (V2 - V1) Vp

Courant janvier 2017 la transcription mathématique :

  • est erronée, mal transcrite.

Cette formule doit être remplacée par :


Cardabela (discussion) 19 juin 2017 à 17:02 (CEST)

L'hélice selon les théories de Isaac Newton et le point de vue thermodynamique

Sommaire du chapitre Hélice

  Caractéristiques des hélices marines
    Théorie élémentaire avec l'eau pour fluide
      Conservation de la matière
      Application du principe fondamental de la dynamique
      Puissance fournie par l'hélice
      Recherche du meilleur rendement d'hélice
      Résumé détaillé
        Puissance à fournir à l'hélice par le moteur
        Puissance utile à l'avancement du navire
        Force propulsive
        Dépression et cavitation
        La pression sur l'hélice et sa limite
        Rendement
        Conclusion
      Résumé sous forme de tableau
    Voir aussi
  Notes et références
  Liens externes
  Voir aussi sur Wikibooks

Théorie thermodynamique de l'hélice

Ce livre doit être rangé sur l'étagère Wikilivres Science Appliquée Technologie
Généralités sur les sciences appliquées et les techniques, section CDU/6/60



Une théorie de l'hélice propulsive a été développée dès l'apparition des machines à vapeur grâce aux travaux de Bernoulli développés par Euler puis par Morosi et Bidone [1] qui démontrent que la force du jet est le résultat d'une percussion dont la force est comme 1,84 est à 1. Cependant la théorie a longtemps piétiné, les formules obtenues par approximations successives sont complexes. Dès la seconde moitié du XIXe siècle avec les théories mathématiques de la physique d'Isaac Newton il eût été possible d'établir des formules de calculs d'hélice ; cependant le concept n'était pas encore au rendez-vous. Ce n'est qu'après le développement des théories de la mécanique des fluides et de la thermodynamique, que l'on a mieux compris le phénomène et que l'on a su formuler des expressions mathématiques simples.

En 1905, Albert Einstein publie trois articles dont l'un reconnaît l'existence des atomes, des molécules, caractérisés par un mouvement brownien. On comprend ensuite que l'intuition statistique de Ludwig Boltzmann est applicable et que l'aspiration du fluide (l'eau de mer) est le résultat statistique de chocs entre molécules. Ce n'est pas l'hélice qui aspire l'eau ; c'est l'agitation des molécules d'eau qui pousse statistiquement vers une zone de collision moins forte en accumulant l'énergie acquise au cours des collisions. L'hélice a de ce fait deux fonctions : évacuer des molécules d'eau qui arrivent et donner une impulsion aux molécules d'eau pour transmettre la force propulsive au bateau. Pour ce faire, il faut au moins disposer de l'énergie acquise lors de l'aspiration à laquelle il faut ajouter l'énergie d'évacuation en plus de l'énergie transmise au support (le bateau, si celui-ci se déplace. Rappel : l'énergie est le produit d'une force par un déplacement).

Nos sens sont trompeurs. L'hélice marine n'est ni une vis, ni un tire-bouchon. La forme hélicoïdale n'a qu'un intérêt, c'est de répartir l'effort de percussion uniformément, sur toute sa surface.

Hélice de navire

Les hélices marines peuvent être de simples pales, comme les hélices d'avions, elles peuvent même être recouvertes d'un léger duvet végétal sans que cela affecte trop l'impact nécessaire à la propulsion. En effet, il n'y a pas de glissement d'eau important le long de la pale, susceptible de faire perdre de l'énergie.

Caractéristiques des hélices marines

Définitions :

  • Le diamètre, donné en « pouces » par le fabricant. Il faut l'exprimer en « mètres » pour les calculs.
  • Le pas de construction est une caractéristique géométrique de l'hélice. C'est la longueur d'avance théorique pour un tour, sans glissement (recul = 0). Le pas de l'hélice pourrait ainsi être comparé au pas d'une vis à métaux, mais ceci conduirait à des erreurs d'interprétation sur le fonctionnement de l'hélice. Le pas est exprimé en pouces ou en mètres, il peut être à gauche ou à droite.
  • Le coefficient de remplissage (0,xx ou xx %) : ce coefficient caractérise la surface relative des pales par rapport à la surface d'un disque de même diamètre, il est important pour estimer la limite de l'effort d'aspiration applicable sur la surface des pales afin d'éviter la cavitation. Ce coefficient n'intervient pas dans nos calculs ci-après.
  • Le calage est l'angle que fait la corde d'un profil de pale avec le plan de rotation de l'hélice.
  • Le recul : d'un point de vue thermodynamique, le recul correspond à une perte d'énergie dans le passage de l'eau au travers de l'hélice[2]. On parle d' entropie ou d'augmentation du désordre. La vitesse de propulsion de l'eau est inférieure d'un certain pourcentage à celle attendue. Ce pourcentage est communément appelé le recul. Ainsi, pour résoudre les problèmes de calcul on pourrait dire que le pas effectif de l'hélice est inférieur au pas de construction. On définit la notion de recul par la relation suivante :
    recul = 1 - (pas effectif / pas de construction) dans des conditions de vitesse d'avancement du navire et de rotation de l'hélice.
    Le coefficient de recul s'exprime souvent en pourcentage, par exemple 28 % au lieu de 0,28 dans telles conditions d'avancement et de rotation.
    Le recul est important à faible vitesse et forte poussée, il augmente avec la force de poussée sur l'hélice : avec le débit et la vitesse de rotation.
  • La cavitation. La dépression à l'extrados du profil de pale dépend de la vitesse de rotation de l'hélice, de son pas et du profil. La dépression est limitée par la pression atmosphérique ; elle ne peut pas descendre en dessous d'environ 1 bar en surface (la vitesse ne doit pas dépasser 14 m/s) ; au-delà de cette valeur l'eau se transforme en vapeur (phénomène de cavitation). À un mètre de profondeur cette vitesse limite serait d'environ 14,7 mètres/seconde.
    Cette notion est très importante pour les navires rapides mais intervient rarement pour un voilier monocoque où l'on s'arrange pour que la vitesse d'aspiration de l'eau soit largement inférieure à 14 mètres/seconde, les héliciers choisissent toujours le plus grand diamètre compatible avec la cage d'hélice.
    Depuis quelques années sont apparues les hélices de surface qui permettent de diminuer les risques de cavitation ; le passage des pales en surface nettoie l'hélice des bulles de vapeur d'eau.
Flux d'hélice

Théorie élémentaire avec l'eau pour fluide

La propulsion est due à la différence de quantité de mouvement entre la masse d'eau entrante et sortante de l'hélice.

Conservation de la matière

La masse d'eau aspirée par unité de temps est égale à la masse d'eau propulsée 

la masse d'eau aspirée par l'hélice pendant une seconde correspond à un cylindre de surface et de longueur .

Définitions 
est la masse volumique de l'eau en kg par mètre cube et est la masse de l'eau qui traverse l'hélice pendant une seconde.
en m² et en mètres par seconde.

Posons pour faire abstraction de la surface de l'hélice.

  • est la vitesse de l'eau qui traverse l'hélice.
  • est la vitesse d'écoulement du fluide devant l'hélice :
C'est la vitesse d'un cours d'eau dans un référentiel fixe ou la vitesse de déplacement d'un bateau pour un référentiel mobile.
  • est la vitesse de la masse d'eau propulsée derrière l'hélice.
Cette vitesse dépend du référentiel fixe ou mobile.

Application du principe fondamental de la dynamique

La force propulsive dépend de la différence de vitesse entre la masse d'eau aspirée et la masse d'eau propulsée :

(action = réaction ; la force qui permet l'accélération de la masse d'eau trouve son appui sur l'hélice !)

Selon le Principe fondamental de la dynamique: est le vecteur de la force induite par l'accélération de la masse m.

Équation aux dimensions : que l'on peut aussi noter

Abstraction faite des vecteurs, puisqu'ils sont colinéaires.

Dans notre système métrique, F est l'expression d'une grandeur physique qui s'exprime en newtons (un kilogramme-force = 9,81 N), m est la masse d'eau traversant l'hélice en kg (kilogramme masse) par seconde, V2 et V1 s'expriment en mètres par seconde.

Puissance fournie par l'hélice

La puissance est le produit de la force de propulsion définie dans le chapitre Application du principe fondamental de la dynamique par la vitesse de la masse d'eau définie dans le chapitre Conservation de la matière

  • La puissance s'exprime en watts.

Cette puissance est aussi égale à la puissance de la masse d'eau propulsée par l'hélice, moins la puissance de la masse d'eau entrante :

Il y a décrochage pour V2 = V1 (pas de force propulsive), ce qui semble évident !

On en déduit et  :

et

Recherche du meilleur rendement d'hélice

Variation (dérivée) de la puissance fournie par l'hélice en fonction de V1, pour une propulsion V2 constante

La variation de la puissance est nulle pour , ou la puissance de l'hélice atteint alors sa valeur optimale.

courbe P%(V1/V2)La puissance 1,200 (120%) s'explique par le fait que l'eau possède une énergie entrante.

On choisit cette valeur de pour avoir un maximum de puissance d'hélice au moment où on en a le plus besoin, lorsque le moteur est poussé au voisinage de sa plus forte puissance.

définit la vitesse de surface Vs optimale du navire pour la puissance optimale de l'hélice et la plus forte puissance du moteur.

Estimation des efforts à 6,42 nœuds Imaginez-vous au détroit de Messine avec un courant contraire de 5 nœuds, avec un vent debout qui refuse la progression à 400 kgf. Votre progression sera péniblement de 1,5 nœuds sans oublier la « mer de vent » : les vagues qui tapent, l'eau qui éclabousse et balaie le pont...
6,42 nœuds est ici la vitesse de surface optimale estimée du navire, pour la puissance maximale du moteur avec le meilleur rendement de l'hélice.
Moteur : 2 600 tours par minute
Hélice : 1 145,3 tours par minute
 : 16,02 nœuds
Recul : 0,21
 : 12,58 nœuds Notez que la valeur de Vp = 2V1 = 12,84 Nds pourrait être atteinte pour Moteur : entre 2 600 et 2 700.
Effort : 7984 Nw
Puissance : 48,64 kW
Rendement η de l'hélice : 0,51
Rappelez-vous que ce ne sont que des estimations, assez proches de la réalité.

Résumé détaillé

Puissance à fournir à l'hélice par le moteur

En nous affranchissant de V2

Rappels 
  • V2 = 2Vp - V1 ; Vp = (V1+V2)/2
  • est une masse.
  • est une force.

Puissance utile à l'avancement du navire

Force propulsive

est la force d'aspiration, en newtons, due à la dépression devant l'hélice

est la force de pression, derrière l'hélice

avec V2 = 2Vp - V1 :

est la force d'aspiration due à la dépression devant l'hélice, elle est égale à la moitié de la force de propulsion, l'autre moité est fournie par la force de pression.

Dépression et cavitation

est la valeur de la dépression, en pascals, devant l'hélice, c'est également la valeur de la pression du côté refoulement de l'hélice. La valeur de la dépression doit être inférieure à la pression locale qui vaut où g = 9,81, h est la hauteur d'eau en mètres et 101 500 est la pression atmosphérique moyenne : 1 015 hPa.

La pression sur l'hélice et sa limite

La pression ne doit pas dépasser une valeur précisée par le constructeur de l'hélice.

La pression ne doit pas dépasser 1,2 kgf/cm² (117 680 P) pour l'hélice 3 pales RADICE E13 soit, pour une surface de pales 100 cm² (1 dm²), une poussée maximale de 120 kgf (1 200 kgf pour une surface des pales de 1 000 cm²)

Exemple Pour une hélice de 19"
D = 0,483 m, S = 0,1833 m², Sh/S = 0,515, Surface des pales : (0,1833 * 0,515 = 0,0946 m²) 946 cm²,
Effort maximal pour cette hélice : (946 * 1,2 =) 1132 kgf
Rendement

Rendement = Puissance utile / Puissance fournie par le moteur

La consommation de carburant sera d'autant plus faible que la vitesse de propulsion s'approchera de la vitesse de déplacement V1 du navire c'est-à-dire Vp s'approchant de V1 (Vp > V1) !

Conclusion

Le calcul du pas de l'hélice dépend de la vitesse d'avancement du navire estimée à la puissance optimale ; elle doit être calculée de telle sorte que la vitesse de propulsion Vp se situe autour de 2 fois cette vitesse d'avancement, le rendement (puissance utile / puissance fournie) est alors de 50 % à la puissance maximale.

Lorsque cette condition est remplie, il faut vérifier que le moteur produit encore une force satisfaisante en statique et en dynamique !

Résumé sous forme de tableau

Tableau
Groupe d'expressions Grandeur physique Expression mathématique Commentaire
Force propulsive puissances et rendement
Unité de force : le newton
Unité de puissance : le watt
Rendement
Système métrique utilisé
Une tonne par mètre cube d'eau douce
Unité de surface : le mètre carré (m²)
Vitesse de l'eau entrant dans l'hélice Vitesse de surface du navire ou du débit fluvial (m/s)
Vitesse de propulsion dans l'hélice, en mètres par seconde,
où Vh = Pas (en mètres) * tours/seconde de l'hélice,
avec recul variable selon les conditions de navigation.

Voir aussi

Consultez également ces pages dans d’autres projets Wikimedia :

Ressources multimédia sur Commons.
Article encyclopédique sur Wikipédia.

Feuilles volantes grands formats

Les feuilles volantes : « Feuilles de calculs[5] », « Estimation des efforts à 7 nœuds[6] » et « Puissance sur l'hélice à 7 nœuds[7] » doivent être imprimées en grands formats à l'italienne (paysage).

Feuille de calculs 
Feuille de calcul
Estimation des efforts à 7 nœuds 
Tableau d'estimation des efforts à 7 nœuds
Puissance sur l'hélice à 7 nœuds 
Graphe de puissance sur l'hélice à 7 nœuds

Notes et références

  1. « Les expériences De Morosi et Bidone ont prouvé par les faits matériels les doctrines d'Euler et de Bernoulli. »
    Bidone a fait des études très poussées sur les jets. Ces expériences sont décrites en français dans Memorie della Reale accademia delle scienze di Torino
    . Pour plus de détails : Hélice marine
  2. Discussion Hélice marine
  3. L'application de cette théorie avec un moteur de 75 Ch turbo sur une goélette de 15 tonnes a donné lieu à publication : Inverseurs et hélices
  4. https://fr.wikibooks.org/wiki/Hélices_de_navires_à_déplacement/Résultats_à_des_vitesses_caractéristiques
  5. Feuille volante : https://fr.wikibooks.org/wiki/Fichier:Th-helice-application1.gif
  6. Feuille volante : https://fr.wikibooks.org/wiki/Fichier:Th-helice-application2.gif
  7. Feuille volante : https://fr.wikibooks.org/wiki/Fichier:Th-helice-application3.gif

Liens externes

Memorie della Reale accademia delle scienze di Torino : Morosi et Bidone Pages 1 à 191 notamment §4 (Page 134)