Mathc gnuplot/Application : Courbe de Bézier

Un livre de Wikilivres.
Sauter à la navigation Sauter à la recherche
Mathc gnuplot
Mathc gnuplot
Sommaire

I - Dessiner

Fichiers h partagés :

Application :

II - Animer

Application :

III - Géométrie de la tortue standard

Application :

IV - Géométrie de la tortue vectorielle

Application :

Conclusion

Annexe

Livre d'or



Préambule[modifier | modifier le wikicode]

Les courbes de Béziers dans Wikipedia.

Courbe de Béziers[modifier | modifier le wikicode]

Présentation[modifier | modifier le wikicode]

N'oubliez pas les fichiers *.h partagés et ceux de ce chapitre.

Crystal Clear mimetype source c.png c01.c
Exemple à tester
/* ------------------------------------ */
/*  Save as :  c01.c                    */
/* ------------------------------------ */
#include "x_ahfile.h"
/* ------------------------------------ */
int main(void)
{
 printf(" Une courbe de Bezier.\n\n");

    G_quadratic_Bezier_lp_2d(
             i_WGnuplot(-10,90,-10,50),
             i_point2d(20.,10.),
             i_point2d(40.,40.),
             i_point2d(60.,10.) );

 printf("\n\n load \"a_main.plt\" with gnuplot."
        "\n\n Press return to continue");

 return 0;
}


Résultat dans gnuplot
Bezier curve a1


Une application[modifier | modifier le wikicode]

Nous avons essayé de recouvrir un quart de cercle avec une courbe de Béziers. Nous savons que c'est impossible (voir théorie)


Crystal Clear mimetype source c.png c02.c
Exemple à tester
/* ------------------------------------ */
/*  Save as :  c02.c                    */
/* ------------------------------------ */
#include "x_ahfile.h"
/* ------------------------------------ */
int main(void)
{
 printf(" Une courbe de Bezier.\n\n");

    G_quadratic_Bezier_lp_2d(
             i_WGnuplot(-0,2,-0,1),
             i_point2d(0.,1.),
             i_point2d(1.,1.),
             i_point2d(1.,0.)  );

 printf("\n\n load \"a_main.plt\" with gnuplot."
        "\n\n Press return to continue");

 return 0;
}


Résultat dans gnuplot
Bezier curve a2


Les fichiers h de ce chapitre[modifier | modifier le wikicode]

Crystal Clear mimetype source h.png x_ahfile.h
Appel des fichiers
/* ------------------------------------ */
/*  Save as :  x_ahfile.h               */
/* ------------------------------------ */
#include    <stdio.h>
#include   <stdlib.h>
#include    <ctype.h>
#include     <time.h>
#include     <math.h>
#include   <string.h>
/* ------------------------------------ */
#include     "xdef.h"
#include     "xplt.h"
#include     "xspv.h"
/* ------------------------------------ */
#include    "kpoly.h"
#include  "kbezier.h"


Cette partie ne peut être vue que dans wikiversité.


Crystal Clear mimetype source h.png kpoly.h
Les équations de la courbe
/* ------------------------------------ */
/*  Save as :    kpoly.h                */
/* ------------------------------------ */
double quadratic_Bezier_x_2d(
double   t,
point2d P0,
point2d P1,
point2d P2
)
{
return(
    P0.x * pow((1-t),2) * pow(t,0) +
2 * P1.x * pow((1-t),1) * pow(t,1) +
    P2.x * pow((1-t),0) * pow(t,2)
);
}
/* ------------------------------------ */
double quadratic_Bezier_y_2d(
double   t,
point2d P0,
point2d P1,
point2d P2)
{
return(
    P0.y * pow((1-t),2) * pow(t,0) +
2 * P1.y * pow((1-t),1) * pow(t,1) +
    P2.y * pow((1-t),0) * pow(t,2)
);
}
/* ------------------------------------ */


Crystal Clear mimetype source h.png kbezier.h
La fonction graphique
/* ------------------------------------ */
/*  Save as :  kbezier.h                */
/* ------------------------------------ */
void G_quadratic_Bezier_lp_2d(
W_Ctrl   w,
point2d P0,
point2d P1,
point2d P2
)
{
FILE   *fp;

double  mini = 0.;
double  maxi = 1.;
double  step =  .01;
double     t = mini;

        fp = fopen("a_main.plt","w");
fprintf(fp," set zeroaxis lt 8\n"
           " set grid \n\n"
           " set size ratio -1\n"
           " plot [%0.3f:%0.3f] [%0.3f:%0.3f] \\\n"
           " \"a_pts\" with linesp lt 3 pt 1, \\\n"
           " \"a_ctrlpt\" with linesp lt 4 pt 4 \\\n\n"
           " reset",w.xmini,w.xmaxi,w.ymini,w.ymaxi);
 fclose(fp);

             fp = fopen("a_pts","w");
 for(t=mini; t<=maxi; t+=step)
     fprintf(fp," %6.5f   %6.5f\n",quadratic_Bezier_x_2d(t,P0,P1,P2),
                                   quadratic_Bezier_y_2d(t,P0,P1,P2));
      fclose(fp);

             fp = fopen("a_ctrlpt","w");
     fprintf(fp," %6.5f   %6.5f\n",P0.x,P0.y);
     fprintf(fp," %6.5f   %6.5f\n",P1.x,P1.y);
     fprintf(fp," %6.5f   %6.5f\n",P2.x,P2.y);
      fclose(fp);

 Pause();
}


Conclusion[modifier | modifier le wikicode]

Nous avons utilisé dans les exemples trois points de contrôles. Ici un exemple avec trois courbes et cinq points de contrôles.

Résultat dans gnuplot
Bezier curve a3