Mathc gnuplot/Application : Fonction Heaviside

Un livre de Wikilivres.
Sauter à la navigation Sauter à la recherche
Mathc gnuplot
Mathc gnuplot
Sommaire

I - Dessiner

Fichiers h partagés :

Application :

II - Animer

Application :

III - Géométrie de la tortue standard

Application :

IV - Géométrie de la tortue vectorielle

Application :

Conclusion

Annexe

Livre d'or



Préambule[modifier | modifier le wikicode]

La fonction Heaviside dans Wikipedia.

La fonction Heaviside[modifier | modifier le wikicode]


Présentation[modifier | modifier le wikicode]

Voici une possibilité pour la déclaration de la fonction Heaviside.

/* ------------------------------------ */
double H(
double x)
{
       if(x>0.)return(1.);
       else    return(0.);
}
/* ------------------------------------ */


N'oubliez pas les fichiers *.h partagés et ceux de ce chapitre.

Crystal Clear mimetype source c.png c01.c
La fonction
/* ------------------------------------ */
/*  Save as :  c01.c                    */
/* ------------------------------------ */
#include "x_ahfile.h"
/* ------------------------------------ */
int main(void)
{
 printf(" H : if(x>0) 1 else 0 \n");

      G_plot(i_WGnuplot(-2.,20.,-1.,2.),
             i_time(-2.,20.,0.001),
             H);

 printf("\n  load \"a_main.plt\" with gnuplot."
        "\n  Press return to continue         ");
 getchar();

 return 0;
}


Une application[modifier | modifier le wikicode]

Nous allons simplement appeler la fonction Heaviside dans une boucle for.

Pour obtenir une somme : Sum((-1)^n*H(x-n),n=0..20)


Crystal Clear mimetype source c.png c02.c
Une application
/* ------------------------------------ */
/*  Save as :  c02.c                    */
/* ------------------------------------ */
#include "x_ahfile.h"
/* ------------------------------------ */
double v(
double x)
{
double n=0, r=0;

 for(;n<20;++n) r += pow(-1,n)*H(x-n);

 return(r);
}
char veq[] = "Sum((-1)^n*H(x-n),n=0..20)";
/* ------------------------------------ */
int main(void)
{
 printf(" H : if(x>0) 1 else 0 \n\n"
        " v : x-> %s           \n\n",veq);

      G_plot(i_WGnuplot(-2.,20.,-1.,2.),
             i_time(-2.,20.,0.001),
             v);

 printf("\n\n load \"a_main.plt\" with gnuplot."
        "\n\n Press return to continue         ");
 getchar();

 return 0;
}


Résultat dans gnuplot
Heaviside02


Les fichiers h de ce chapitre[modifier | modifier le wikicode]

Crystal Clear mimetype source h.png x_ahfile.h
Appel des fichiers
/*  Save as :   x_ahfile.h              */
/* ------------------------------------ */
#include    <stdio.h>
#include   <stdlib.h>
#include    <ctype.h>
#include     <time.h>
#include     <math.h>
#include   <string.h>
/* ------------------------------------ */
#include "xdef.h"
#include "xplt.h"
/* ------------------------------------ */
#include   "fh.h"
#include  "g_f.h"


Crystal Clear mimetype source h.png fh.h
La fonction Heaviside
/* ------------------------------------ */
/*  Save as :  fh.h                     */
/* ------------------------------------ */
double H(
double x)
{
       if(x>0.)return(1.);
       else    return(0.);
}
/* ------------------------------------ */


Crystal Clear mimetype source h.png g_f.h
La fonction graphique
/* ------------------------------------ */
/*  Save as :   g_f.h                   */
/* ------------------------------------ */
void G_plot(
W_Ctrl W,
t_Ctrl T,
double (*P_f1)(double x)
)
{
FILE  *fp;
double  t;

        fp = fopen("a_main.plt","w");
fprintf(fp,"# Gnuplot file : load \"a_main.plt\" \n\n"
           " set zeroaxis lt 8\n"
           " set grid\n"
           " plot [%0.3f:%0.3f] [%0.3f:%0.3f] \\\n"
           " \"data\" with line lt 3\n"
           " reset",
             W.xmini,W.xmaxi,W.ymini,W.ymaxi);
 fclose(fp);

        fp = fopen("data","w");
 for(t=T.mini; t<=T.maxi; t+=T.step)
     fprintf(fp," %6.3f   %6.3f\n",t,(*P_f1)(t));
 fclose(fp);
}


Conclusion[modifier | modifier le wikicode]

Certains résultats sont vraiment surprenants en associant la fonction heaviside et la fonction sinus.

Heaviside03