Mathc gnuplot/Application : Vecteur normal

Un livre de Wikilivres.
Sauter à la navigation Sauter à la recherche
Mathc gnuplot
Mathc gnuplot
Sommaire

I - Dessiner

Fichiers h partagés :

Application :

II - Animer

Application :

III - Géométrie de la tortue standard

Application :

IV - Géométrie de la tortue vectorielle

Application :

Conclusion

Annexe

Livre d'or



Préambule[modifier | modifier le wikicode]

Présentation[modifier | modifier le wikicode]

N'oubliez pas les fichiers *.h partagés et ceux de ce chapitre.

Dessiner le vecteur normale au point P[modifier | modifier le wikicode]

Crystal Clear mimetype source c.png c01.c
Dessiner le vecteur normale au point P
/* ------------------------------------ */
/*  Save as :   c01.c                   */
/* ------------------------------------ */
#include "x_ahfile.h"
#include       "fa.h"
/* ------------------------------------ */
int main(void)
{
   printf(" Draw the normal vector at the point P.\n\n"
          " f : (x,y)-> %s\n\n", feq);

     G_3d_v(i_WsGnuplot(-3,3,-3,3,-.5,2),
            i_VGnuplot( 94.,22.,1.,1.),
            feq,f,f_z,
            i_point2d(1,0.));

 printf(" Open the file \"a_main.plt\" with gnuplot.\n"
        " Press return to continue.\n");
 getchar();

 return 0;
}

Le résultat.

Résultat dans gnuplot
Tangente32

Les fichiers h de ce chapitre[modifier | modifier le wikicode]

Crystal Clear mimetype source h.png x_ahfile.h
Appel des fichiers
/* ------------------------------------ */
/*  Save as :   x_ahfile.h              */
/* ------------------------------------ */
#include    <stdio.h>
#include   <stdlib.h>
#include    <ctype.h>
#include     <time.h>
#include     <math.h>
#include   <string.h>
/* ------------------------------------ */
#include     "xdef.h"
#include     "xplt.h"
#include     "xspv.h"
#include  "xfxyz_x.h"
/* ------------------------------------ */
#include   "kg_3dv.h"


Crystal Clear mimetype source h.png fa.h
La fonction à dessiner
/* ------------------------------------ */
/*  Save as :  fa.h                     */
/* ------------------------------------ */
double f(
double x,
double y)
{
 return(      (2*exp(-x) * cos(y)) );
}
char  feq[] = "2*exp(-x) * cos(y)";
/* ------------------------------------ */
double f_z(
double x,
double y,
double z)
{
 return(      (2*exp(-x) * cos(y) - z) );
}
char  f_zeq[] = "2*exp(-x) * cos(y) - z";


Crystal Clear mimetype source h.png kg_3dv.h
La fonction graphique
/* ------------------------------------ */
/*  Save as :   kg_3dv.h                */
/* ------------------------------------ */
void G_3d_v(
  Ws_Ctrl W,
View_Ctrl V,
  char feq[],
double (*P_f) (double x, double y),
double (*P_fz)(double x, double y, double z),
point2d p
)
{
FILE   *fp;
point3d p3d = i_point3d(p.x,p.y,(*P_f)(p.x,p.y));

        fp = fopen("a_main.plt","w");
fprintf(fp,"reset\n"
           "set    samples 40\n"
           "set isosamples 40\n"
           "set hidden3d\n"
           "set view %0.3f, %0.3f, %0.3f, %0.3f \n"
           "splot[%0.3f:%0.3f][%0.3f:%0.3f][%0.3f:%0.3f]\\\n"
           "\"a_ka.plt\" with linespoints,\\\n"
           "%s ",
            V.rot_x,V.rot_z,V.scale,V.scale_z,
            W.xmini,W.xmaxi,W.ymini,W.ymaxi,W.zmini,W.zmaxi,
            feq);
 fclose(fp);

 fp = fopen("a_ka.plt","w");
         fprintf(fp," %6.3f   %6.3f   %6.3f\n",
              p.x, p.y, ((*P_f)(p.x,p.y)) );
         fprintf(fp," %6.3f   %6.3f   %6.3f\n",
              p.x-fxyz_x((*P_fz),0.0001,p3d),
              p.y-fxyz_y((*P_fz),0.0001,p3d),
((*P_f)(p.x,p.y))-fxyz_z((*P_fz),0.0001,p3d));
 fclose(fp);

Pause();
}