Planétologie/Les chutes d'astéroïdes

Un livre de Wikilivres.
Aller à : navigation, rechercher
Illustration de la différence entre météoroïde, météore et météorite.

Il arrive qu'un astéroïde soit attiré par la gravité d'une planète et chute à sa surface. On a déjà observé de telles chutes sur Terre, bien qu'elles soient extrêmement rares. L’astéroïde tombé sur Terre (ou sur une planète) devient une météorite. C'est ainsi : astéroïdes et météorites sont deux choses différentes, le premier voguant dans l'espace, le second étant tombé sur Terre. Cette distinction terminologique n'est pas la seule : il faut ainsi distingue les météores des météorites, eux-même distincts des météoroïdes... Dans le détail, les plus petits astéroïdes sont appelés de météoroïdes, tant qu'ils restent dans l'espace. Lorsqu'un météoroïde entre dans l'atmosphère, on lui donne le nom de météore. Ce n'est que quand le météore touche le sol qu'il devient une météorite.

La traversée de l'atmosphère[modifier | modifier le wikicode]

Nombre d'astéroîdes qui se sont désintégrés dans l'atmosphère lors de l'année 2014.

Le météoroïde se déplace par rapport à la Terre à une vitesse nommée vitesse cosmique. Celle-ci correspond à la différence entre la vitesse de révolution du météoroïde (qui tourne autour du Soleil) et celle de la Terre. Les météoroïdes qui tournent autour du Soleil dans le même sens que la Terre, ont souvent une vitesse cosmique assez faible, d'environ 15 à 30 kilomètres par seconde. Par contre, si météoroïde et Terre ont des sens de révolution inverse, la vitesse cosmique est beaucoup plus importante, pouvant doubler ou tripler par rapport à d'autres météoroïdes.

La vitesse cosmique est largement supérieure à la vitesse du son dans l’atmosphère, ce qui fait que l'entrée dans l'atmosphère d'un météore ne se fait pas sans heurts. Après quelques kilomètres de traversée, quand l’atmosphère est devenue suffisamment dense, le météore va engendrer des ondes de chocs identiques à celles d'un avion qui dépasse mach 1. Pour les gros météores, le BANG qui en découle est audible depuis le sol, à de très grandes distances. Mas les petits météores donnent des ondes de chocs rapidement amorties, inaudibles sauf à de très faibles distances. C'est après ce BANG que la friction atmosphérique va commencer à se faire sentir.

La fusion du météore et la croute de fusion[modifier | modifier le wikicode]

La friction de l'atmosphère chauffe le météore au point de le liquéfier, voire de le vaporiser. Certains astéroïdes ne surviennent pas à cette fusion et se vaporisent intégralement avant d'atteindre la surface. Seuls les astéroïdes suffisamment massifs survivent et s'écrasent sur le sol.

La croute de fusion[modifier | modifier le wikicode]

Cette photographie de météorite montre bien la croute de fusion noire, au-dessus du coeur de la météorite.

La chaleur du météore est suffisamment intense pour faire fondre sa surface sur quelques centimètres. Mais cela ne dure qu'un temps, tant que la vitesse du météore est suffisante pour entretenir une forte friction atmosphérique. Aussi spectaculaire que cela puisse paraitre, le météore n'est fondu et métamorphisé, que sur faible profondeur. Les météorites ont d'ailleurs un cœur relativement froid, immédiatement après leur chute. Quand le météore atteint sa vitesse terminale, la friction diminue fortement et sa température fait de même. La surface fondue va refroidir et se solidifier, formant une croute de fusion solide. Des mouvements turbulents à la surface du météore peuvent aussi former des sortes de creux à la surface du météore, creux qui sont conservés dans la croute de fusion. De telles formations s'appellent des rémaglyptes.

L'émission de lumière[modifier | modifier le wikicode]

Outre la liquéfaction de la surface, le météore va se vaporiser et va fortement chauffer l'air qui l'entoure. Le gaz émis, très chaud, va luire intensément. La lumière est souvent visible depuis le sol. Si les petits corps donnent des étoiles filantes seulement visibles la nuit, les météores plus imposants peuvent se voir même en plein jour. La couleur du météore dépend de sa composition chimique. Certains météores ont une belle couleur blanche/orangée, donnant une belle étoile filante quand on l'observe du sol, d'autres une couleur bleue, verte, voire rouge.

Origine des pluies d'étoiles filantes.

On peut voir la lumière du météore au sol. Pour les météores les plus petits, leur lumière forme une étoile filante dans le ciel. Il n'est pas rare d'observer du sol de véritables pluies de météores, à savoir une forte concentration d'étoiles filantes dans le ciel : on peut observer plus d'une à deux étoiles filantes par minutes dans le meilleur des cas. Cela arrive quand l'orbite de la Terre croise un amas de petites météorites, une sorte de nuage de grosses poussières et de micro-astéroïdes appelé essaim. Dans tous les cas, ces micrométéorites sont des débris qu'une comète a laissé sur sa trajectoire. Lorsque la Terre croise l'orbite de la comète, ces débris sont happés par la gravité de la Terre et se consument dans son atmosphère. Les trajectoires de la Terre et de la comète étant fixes, on devine que le croisement des trajectoires a bien lieu chaque année à la même date. On devine que ces pluies d'étoiles filantes apparaissent de manière cyclique dans le ciel, à des périodes bien précises de l'année.

Point radiant

Lors de ces pluies, toutes les étoiles filantes semblent provenir d'un point unique dans le ciel, qui porte le nom de radiant. Sa position dépend de la trajectoire de la Terre et de la position de l'amas d'astéroïdes traversé. Le radiant de ces pluies cycliques est localisé dans une constellation bien précise, qui donne le nom à pluie d'étoile filante. Par exemple, il y a une pluie de météorite chaque année aux alentours de fin juillet, début Aout, aux même dates que la fameuse nuit des étoiles. Elle semble provenir de la constellation de Persée, d'où le nom de perséides qui lui est donné. Cette pluie de météorite est constituée des débris de la comète Swift-Tuttle, la Terre croisant leur trajectoire chaque année. D'autres pluies d'étoiles filantes ont lieu chaque année, à des dates quelques peu différentes. Les orionides ont lieu entre le 2 octobre et le 7 novembre et ont leur radiant dans la constellation d'Orion. Elles proviennent de débris émis par la fameuse comète de Halley.

Le ralentissement par friction[modifier | modifier le wikicode]

Du fait de la friction atmosphérique, le météore va progressivement ralentir jusqu’à atteindre sa vitesse terminale, proche de quelques centaines de mètres par secondes. La distance de freinage du météore varie grandement selon la taille et le poids du météore, sa masse ayant de loin une influence prédominante. Plus un météore est massif, plus sa distance de freinage est grande : il atteint sa vitesse terminale à une altitude plus basse qu'un météore moins massif. Certains météores très massifs et/ou très rapides ne vont d'ailleurs pas atteindre leur vitesse terminale, parce que leur distance de freinage est plus grande que l'épaisseur de l’atmosphère. Ces bolides (c'est le terme qui leur est consacré) donnent des impacts de météorites dits à hypervitesse. Ce sont eux qui créent les cratères d'impact observés sur la surface des planètes telluriques et satellites.

Ellipse de chute de la météorite de Pultusk.

Le ralentissement du météore par friction atmosphérique est souvent responsable de sa désagrégation totale. Le météore se brise en plusieurs fragments. Il faut noter que chaque fragment du météore ont leur propre croute de fusion, ce qui prouve que la fragmentation a lieu avant que le météore n'atteigne sa vitesse terminale. Il arrive rarement que le météore fonde totalement et se vaporise dans l'atmosphère. Cela arrive pour les météores peu massifs ou très rapides. Les fragments vont ensuite ralentir et atteindre leur vitesse terminale chacun de leur côté. L'ensemble des fragments va alors se répartir sur une surface au sol en forme d'ellipse, appelée ellipse de chute.

L'impact sur la surface tellurique[modifier | modifier le wikicode]

Après avoir traversé l'atmosphère, le météore va toucher le sol. L'impact est souvent très violent, mais il arrive que le météore survive à l'impact. Sans cela, on ne trouverait pas de météorites à la surface. L'impact ne forme alors qu'un simple trou dans le sol, mais ne donnent pas de cratère d'impact. Pour que le météore survive à l'impact, il faut qu'il aie atteint sa vitesse terminale et donc que le météore ne soit pas trop massif. En comparaison, les impacts à hypervitesse donnent naissance à des cratères d'impact, bien plus élaborés qu'un simple trou dans le sol. L'impact à hypervitesse démantèle totalement le météore, qui se vaporise intégralement. La météorite ne survit pas à l'impact, ce qui fait qu'il n'y a pas de météorite sous ou dans le cratère d'impact.

Les types de cratères[modifier | modifier le wikicode]

Pour simplifier, il existe deux grands types de cratères : les cratères simples, et les cratères complexes. Les cratères simples ont un plancher en forme de bol inversé, alors que les cratères complexes ont un fond lisse, avec parfois un petit pic au centre. Les cratères simples sont de petits cratères, les plus grands sont systématiquement des cratères complexes. Au-delà d'une certaine taille, qui dépend de la gravité et de la solidité du sol, tout cratère sera forcément un cratère complexe. Tous les cratères sont entourés par une corolle d’éjectas, des morceaux de sol et de météorite projetés par l'impact.

Forme des cratères et différence entre cratères simples et complexes.
Complex Impact Crater Formation.

La formation d'un cratère d'impact[modifier | modifier le wikicode]

La formation d'un cratère, qu'il soit simple ou complexe, est un processus qui se déroule schématiquement en trois étapes, parfois plus.

  • La première phase, la phase de contact et de compression démarre au moment où la météorite touche le sol. La météorite fait alors « pression » sur le sol, compressant fortement celui-ci. Lors de cette phase, l'énergie cinétique de la météorite est transformée en énergie mécanique, sous la forme d'une onde de chocs transmise dans le sol. Cette onde de choc prend la forme d'une onde de compression/décompression qui peut être captée par un sismomètre. Il faut aussi noter que la météorite est aussi parcourue par l'onde de choc, née de son impact avec le sol. Cette onde de choc fracture les roches qu'elle traverse, du moins tant qu'elle ne s'est pas atténuée.
  • La pression au sol né de l'impact est assez forte, mais elle ne dure que quelque temps. La météorite va en quelque sorte cesser d'appuyer sur le sol. C'est à ce moment que se forme une onde de décompression, qui démarre la phase d'excavation. Lors du passage de l’onde de décompression, les roches de la météorite et du sol vont se vaporiser totalement ou partiellement. Dans le cas de la météorite, cette vaporisation partielle va la faire exploser la météorite et la détruire complètement. Quant au sol, celui-ci va être fracturé et débité en de nombreux blocs de grande taille. C'est lors de cette phase que les éjectas sont projetés autour du cratère par l'explosion de la météorite.
  • Par la suite, l'onde de choc devient insuffisante pour briser les roches : l'onde de choc et la résistance des roches s'équilibrent, l'onde de choc s'atténuant du fait de sa propagation. Le cratère est donc totalement formé. Le cratère formé à la suite de cette phase est appelé un cratère transitoire, ou cratère temporaire.

Après sa formation, le cratère va subir les effets de la gravité, de l'érosion et de la relaxe des matériaux du sol. Cette étape est beaucoup plus longue. Le sol va lentement « rebondir » une fois la pression disparue, ce qui explique la formation du pic central dans les cratères complexes. Ce rebond prend un temps qui se chiffre en années, si ce n'est beaucoup plus. La gravité va faire que les bords du cratère vont s'effondrer vers l'intérieur, donnant des « slumps » ou autres formes d'effondrement. Sur les cratères complexes, il se forme des terrasses suite à ces effondrements. Les matières de la couronne qui entoure le cratère vont s'accumuler progressivement au fond du cratère et l’aplanir.

Ces processus sont naturellement plus limités dans les cratères simples, alors qu'ils s'expriment pleinement dans les cratères complexes. Dans les cratères simples, on observe une accumulation de brèches, de roches sédimentaires dans le cratère transitoire. Celles-ci proviennent partiellement de l'effondrement des bords du cratère mais aussi de poussières ou de sables apportés par le vent. Dans le cas des cratères complexes, les effondrements des bords du cratère sont multiples, donnant naissance à des bords possédant plusieurs terrasses. De plus, le rebond du sol se fait sentir, donnant naissance à une remontée du sol au centre du cratère.