Mathématiques avec Python et Ruby/Analyse numérique en Python

Un livre de Wikilivres.
Sauter à la navigation Sauter à la recherche


Fonction[modifier | modifier le wikicode]

Dans ce chapitre, on va effectuer des calculs sur la fonction ; on va appeler cette fonction f. Pour se faciliter la suite, on va créer cette fonction :

def f(x):
    return x**2-5

Résolution numérique d'une équation[modifier | modifier le wikicode]

Pour résoudre l'équation f(x)=0, on cherche un intervalle sur lequel on est certain que f s'annule. C'est le cas pour [1;3] parce que f(1) est négatif et f(3) est positif. La méthode de dichotomie vise à resserrer un tel intervalle. On constate ci-dessous que la fonction f est traitée comme une entrée de l'algorithme au même titre que les bornes a et b de l'intervalle :

def zero(f,a,b):
    if f(a)*f(b)>0:
        print('pas de solution entre '+str(a)+' et '+str(b)+'!')
        return 0
    while(abs(a-b)>1e-14):
        m=(a+b)/2.
        if f(m)*f(a)>0:
            a=m
        else:
            b=m
    print('la solution de f(x)=0 est '+str(m))
    return m



print(zero(f,1,3))

La résolution de l'équation n'est pas terminée, puisque le script ci-dessus n'a donné qu'une seule des deux solutions de cette équation. Par ailleurs, la solution trouvée n'est affichée qu'à près.

Calcul numérique de nombre dérivé[modifier | modifier le wikicode]

Pour calculer le nombre dérivé de f en 5, on va utiliser l'approximation  :

def NDer(f,a):
    h=1e-10
    return (f(a+h)-f(a-h))/(2*h)



print(NDer(f,5))

Calcul numérique d'une intégrale[modifier | modifier le wikicode]

La méthode des rectangles dit que et N est suffisamment grand pour que h soit petit (ci-dessous N=1 000 000) :

def Int(f,a,b):
    h=(b-a)/1000000.0
    somme=0
    for n in range(1000000):
        somme+=h*f(a+n*h)
    return(somme)



print(Int(f,0,2))